Extended (Finite) Sources

Collimated X-ray

 $I_{d}(x_{d},y_{d}) = I_{0} \exp[-\int \mu_{o}(x,y,z) dz]$

X-Ray with a Point Source

$$I_{d} (x_{d}, y_{d}) = I_{i} \exp \left[- \sqrt{1 + \frac{r_{d}^{2}}{d^{2}}} \int \mu_{o} ((x_{d}/d)z, (y_{d}/d)z, z) dz \right]$$
$$I_{d} (x_{d}, y_{d}) = I_{i} \exp \left[- \sqrt{1 + \frac{r_{d}^{2}}{d^{2}}} \int \mu_{o} (x_{d}/M, (y_{d}/M, z) dz \right]$$

where M = d/z and I_i = I_o/ $(1 + (r_d^2/d)^2)^{3/2}$

Place pinhole between source and detector. This pinhole Reproduce an inverted image of source magnified by (d-z)/z=m.

The point response $h(x_d, y_d)$ for the pinhole for a source distribution $s(x_s, y_s)$ is:

$$h(x_d, y_d) = K_s s(x_s, y_s) = K_s s(\frac{x_d}{m}, \frac{y_d}{m})$$

Finite source

The total detected Intensity (image) of a transparent object (hole) having transmission $t(x,y) = \exp[-\mu(x,y) \delta(z - z_0)]$ imaged by a finite x-ray source, s(x,y) is obtained by convolution process:

$$I_d(x_d, y_d) = Kt(\frac{x_d}{M}, \frac{y_d}{M}) * s(\frac{x_d}{m}, \frac{y_d}{M})$$

where: $M = \frac{d}{z}$ and $m = \frac{-(d-z)}{z}$

The detected image will be the convolution of a Magnified object and a magnified source. In frequency domain:

$$I_d(u,v) = KM^2m^2T(Mu,Mv)S(mu,mv)$$

$$I_d(x_d, y_d) = Kt(\frac{x_d}{M}, \frac{y_d}{M}) * s(\frac{x_d}{m}, \frac{y_d}{m})$$

In the Fourier domain:

 $I_d(u,v) = KM^2m^2T(Mu, Mv)S(mu,mv)$

Object is magnified by M = d/zSource magnification causes distortion: $m = \frac{-(d-z)}{-(d-z)}$

e t a ĩ e d a y S i

S

2) Now let's put in an object (for object obliquity). What is the output of x_d , y_d given a source at x_s , y_s ?

We call this the differential detected image.

$$dI_{d}(x_{d}, y_{d}, x_{s}, y_{s}) = dI_{i} \exp[-\int \mu(x, y, z) ds]$$

As before, we will evaluate d_s in terms of x_d , y_d in the detector plane.

$$ds = \sqrt{dx^{2} + dy^{2} + dz^{2}}$$
$$= dz\sqrt{1 + (dx/dz)^{2} + (dy/dz)^{2}}$$

Now finding expressions for x and y paths in terms of z. We want to describe what is happening at some general location x,y in the body.

By similar triangles:

Again, we will build a parametric equation

$$\frac{dx}{dz} = \frac{(x_d - x_s)}{d} \qquad \qquad \frac{dy}{dz} = \frac{(y_d - y_s)}{d}$$

$$ds = \sqrt{dx^{2} + dy^{2} + dz^{2}} = dz\sqrt{1 + (dx/dz)^{2} + (dy/dz)^{2}}$$

$$ds = dz \sqrt{1 + (\frac{x_d - x_s}{d})^2 + (\frac{y_d - y_s}{d})^2} = dz \sqrt{1 + \frac{r_d^2}{d^2}}$$

$$dI_{d} = dI_{i} \exp\left[-\sqrt{1 + \frac{r_{d}^{2}}{d^{2}}} \int \mu_{m}\left(\frac{x_{d} - x_{s}}{d}z + x_{s}, \frac{y_{d} - y_{s}}{d}z + y_{s}, z\right)\right] dz$$

Recalling that
$$M = \frac{d}{z}$$
 and $m = \frac{-(d-z)}{z}$

We can have the result at an arbitrary detector point and arbitrary source point.

$$dI_{d} = dI_{i} \exp\left[-\sqrt{1 + \frac{r_{d}^{2}}{d^{2}}} \int \mu_{m}\left(\frac{x_{d} - mx_{s}}{M}, \frac{y_{d} - my_{s}}{M}, z\right)\right] dz$$

To get the entire result I_d (x_d , y_d), we add up the response from all the source points by integrating over the source.

$$I_{d}(x_{d}, y_{d}) = \int \int dI_{d}(x_{d}, y_{d}, x_{s}, y_{s}) = \frac{1}{4\pi d^{2}} \int \int \frac{s(x_{s}, y_{s})}{(1 + r_{d}^{2}/d^{2})^{3/2}} \exp[-\sqrt{1 + \frac{r_{d}^{2}}{d^{2}}} \int \mu_{m}(\frac{x_{d} - mx_{s}}{M}, \frac{y_{d} - my_{s}}{M}, z) dz] dx_{s} dy_{s}$$

Let's make some assumptions and simplify

- 1) Ignore both obliquity factors
- 2) Assume thin planar object at $z=z_0$ $\mu = \tau (x,y) \delta (z z_0)$

$$I_{d}(x_{d}, y_{d}) = \frac{1}{4\pi d^{2}} \iint s(x_{s}, y_{s}) \exp\left[-\tau \left(\frac{x_{d} - mx_{s}}{M}, \frac{y_{d} - my_{s}}{M}\right)\right] dx_{s} dy_{s}$$

To define this expression in a space invariant convolution form, let:

$$x_{s}' = mx_{s}$$
 and $y_{s}' = my_{s}$

And by considering a magnified source and Magnified object, we can get space invariance as:

$$I_{d} = \frac{1}{4\pi d^{2}m^{2}} \iint s(\frac{x'_{s}}{m}, \frac{y'_{s}}{m}) \exp[-\tau(\frac{x_{d} - x'_{s}}{M}, \frac{y_{d} - y'_{s}}{M}) dx'_{s} dy'_{s}$$

or:

$$I_d = \frac{1}{4\pi d^2 m^2} s(\frac{x_d}{m}, \frac{y_d}{m}) * \exp[-\tau(\frac{x_d}{M}, \frac{y_d}{M})]$$

Let's make above expression linear by replacing:

$$t(x, y) = \exp[-\tau(x, y)]$$

Then:

$$I_{d} = \frac{1}{4\pi d^{2}m^{2}} s(\frac{x_{d}}{m}, \frac{y_{d}}{m}) * t(\frac{x_{d}}{M}, \frac{y_{d}}{M})$$

Here the collection efficiency of pinhole is divided by the ratio of image and source area i.e. m_2

Z	m	Μ	Image	Blur
d	0	1	10mm	0
d/2	1	2	20mm	1mm
d/10	9	10	100mm	9mm

What about volumetric objects? Ignoring obliquity, for thin plane we have:

$$I_d = \frac{1}{4\pi d^2 m^2} \iint s(x_s, y_s) \exp\left[-\tau \left(\frac{x_d - mx_s}{M}, \frac{y_d - my_s}{M}\right) dx_s dy_s\right]$$

Let's model object as an array of planes (||||||) τ (x,y) Therefore: $\mu = \sum_{i} \tau_{i} (x,y) \delta (z - z_{i})$

where m = m(z) or $m_i = -(d - z_i)/z_i$ and $M_i = d/z_i$

$$\exp\left[-\tau\left(\frac{x_d - mx_s}{M}, \frac{y_d - my_s}{M}\right)\right]$$

term is still not linear however

Let's assume the solid object as: $\int \mu dz = \sum \tau_i \ll 1$ Then we can linearize the exponent exp $(-\sum \tau_i) = 1 - \sum \tau_I$

$$I_{d} = \frac{1}{4\pi d^{2}m^{2}} \iint s(x_{s}, y_{s}) [1 - \sum \tau_{i} (\frac{x_{d} - m_{i}x_{s}}{M_{i}}, \frac{y_{d} - m_{i}y_{s}}{M_{i}})]$$

$$I_{d} \approx I_{i} - \sum_{i} \frac{1}{(4\pi d^{2}m_{i}^{2})} s(x_{d}/m_{i}, y_{d}/m_{i}) **\tau_{i} (x_{d}/M_{i}, y_{d}/M_{i})$$
where $I_{i} = \frac{1}{(4\pi d^{2})} \int \int s(x_{s}, y_{s}) dx_{s} dy_{s}$

The output is seen as incident radiation minus a summation of convolutions. Good math, but poor approximation. This is true only in very thin regions of the body

Reasonable approximation (except at boundaries μ approaches 0) Where μ of water is considered as mean μ , and departure from that is μ_{Δ}

 $\mu = \mu_{mean} + \mu_{\Delta}$

$$\exp\left[-\int (\mu_m + \mu_\Delta) dz = \exp\left[-\int \mu_m dz\right] \exp\left[-\int \mu_\Delta dz\right]$$

Since $\int \mu_{\Delta} dz \ll 1$ We can linearize with the approximation $\approx [\exp - \int \mu_{m} dz] [1 - \int \mu_{\Delta} dz]$

$$I_{d} = \frac{1}{4\pi d^{2}m^{2}} \iint s(x_{s}, y_{s}) \exp[-\int \mu_{m}(\frac{x_{d} - mx_{s}}{M}, \frac{y_{d} - my_{s}}{M}, z)]dz \times [1 - \int \mu_{\Lambda}(\frac{x_{d} - mx_{s}}{M}, \frac{y_{d} - my_{s}}{M}, z)]dx_{s}dy_{s}$$

Since μ_m is a constant, the first exponential term is a constant.

Since μ_m is a constant, we can make the approximation:

$$\mu_m(\frac{x_d - mx_s}{M}, \frac{y_d - my_s}{M}, z) \cong \mu_m(\frac{x_d}{M}, \frac{y_d}{M}, z)$$

The remaining integration can now be seen as a series of thin planes.

$$I_{d} = [exp - \int \mu_{m} (x_{d}/M, y_{d}/M, z) dz] \bullet$$

[$I_{i} - \sum 1/(4\pi d^{2}m_{i}^{2}) s (x_{d}/m_{i}, y_{d}/m_{i}) ** \tau_{\Delta i} (x_{d}/M_{i}, y_{d}/M_{i})$

$$\begin{split} I_{d} &= T_{water} \left(x_{d}, \, y_{d} \right) \left[\begin{array}{c} I_{i} - \sum 1/(4\pi d^{2}m_{i}^{2}) \\ &\bullet \ s \left((x_{d}/m_{i}), \, (y_{d}/m_{i}) \right) \, ** \, \tau_{\Delta i} \left(x_{d}/M_{i}, \, y_{d}/M_{i} \right) \right] \end{split}$$

where
$$T_{water} = [exp - \int \mu_m (x_d/M, y_d/M, z) dz]$$

and $I_i = 1/(4\pi d^2) \int \int s(x_s, y_s) dx_s dy_s$

Thus, we have justified viewing the body as an array of planes.