

Photon density at I_{detector} due to Source obliquity

Assumption:

No resolution loss yet due to source. Each ray independent of neighbors

For Parallel Rays: $I_d(x,y) = I_0 e^{-\int \mu(x,y,z) dz}$

Limitations

- 1)Finite Source produces rays that aren't parallel Rays originate from a point source
- 2) Finite Detector
- 3) Distortion due to point source geometry
- 4) Resolution loss due to finite source size (not a point)

$$
I_d(x_d,y_d) = I_i(x_d,y_d) \exp[-\int \mu_0(x,y,z) dr
$$

Photon density at I_{detector}

First, what if no object?

Unit area a \vert Unit area on sphere is smaller than area it subtends on detector. So for unit area on detector, area on sphere reduces by $cos(\theta)$.

Detector Plane

For small solid angles $\Omega \approx \text{area/distance}^2 = a (\cos \theta)/r^2$ $\frac{\Omega}{\Omega}$ is fraction of radiation from the source covering a full sphere subtends 4π steradians, intercepted by Detector

$$
I_d = KN \frac{\Omega}{a}
$$

N photons emitted by source K energy per photon Divide by area a to normalize to detector area

Subtends
$$
4\pi
$$
 steradians, intercepted by Detector
\n
$$
I_d = KN \frac{\frac{Q}{4\pi}}{a}
$$
\nN photons emitted by sour
\nDivide by area a to normal to detector area
\n
$$
I_d = KN \frac{\cos(\theta)}{4\pi r^2}
$$
\nDbliquity
\nInverse Square Law

Normalize to $I_d(0,0) = I_0$

$$
I_0 = \frac{KN}{4\pi d^2}
$$

Now rewriting I_i in terms of I_0 gives, -2

$$
I_d = I_o \frac{d^2}{r^2} \cos(\theta)
$$

$$
I_d = I_o e^{-\tau(\frac{x_d}{M}, \frac{y_d}{M})}
$$

But
$$
\frac{d}{r} = \cos(\theta)
$$

So,

$$
I_d = I_o \cos^3(\theta)
$$

Source Intensity on Detector Coordinates

$$
I_0 = \frac{KN}{4\pi d^2}
$$
\n
$$
I_d = I_0 \cos^3 \theta
$$
\n
$$
\cos(\theta) = \frac{d}{\sqrt{d^2 + r_d^2}} = \frac{1}{\sqrt{1 + \frac{r_d^2}{d^2}}}
$$
\n
$$
I_d = I_0 \frac{1}{\sqrt{1 + \frac{r_d^2}{d^2}}}
$$
\n
$$
\cos(\theta) = \text{Obliquity}
$$
\n
$$
I_d = I_0 \frac{1}{\sqrt{1 + \frac{r_d^2}{d^2}}}
$$
\n
$$
\cos^2 \theta - \text{Inverse Square}
$$
\n
$$
I_{aw}
$$

Practical Example

• For a 40 cm FOV with x-ray source 1 m away, how much amplitude modulation will we have due to source obliquity?

$$
I_d = I_0 \frac{1}{(1 + \frac{r_d^2}{d^2})^{3/2}}
$$

Depth Dependent Magnification

Photon density change due to object obliquity

An incremental path of the x-ray, dr, can be described by its x, y, and z components.

$$
dr = \sqrt{dx^2 + dy^2 + dz^2}
$$

z d x x_d *z d y* y_d

Each point in the body (x,y) can be defined in terms of the detector coordinates it will be imaged at.

$$
x = \frac{x_d}{d} z \qquad y = \frac{y_d}{d} z
$$

Let's make intensity expression parametric in z.

$$
dr = dz\sqrt{1 + (dx/dz)^2 + (dy/dz)^2} \qquad dr = dz\sqrt{1 + (x_d/d)^2 + (y_d/d)^2}
$$

$$
r_d = \sqrt{x_d^2 + y_d^2} \qquad dr = dz\sqrt{1 + r_d^2/d^2}
$$

Then, rewriting an earlier description in terms of the detector plane. z/d describes minification to get from detector plane to object.

$$
I_{d}(x_{d}, y_{d}) = I_{i} \exp \left[-\sqrt{1 + \frac{r_{d}^{2}}{d^{2}}} \int \mu_{o} \left((x_{d}/d)z, (y_{d}/d)z, z \right) dz \right]
$$

Putting it all together gives,

$$
I_d = I_o/(((1 + r_d^2)/d^2)^{3/2}) \exp[-\sqrt{1 + \frac{r_d^2}{d^2}} \int \mu_o ((x_d/d)z, (y_d/d)z, z) dz]
$$

source obliquity behiquity object obliquity

Object μ (x,y,z) = μ_0 rect ((z - z_o)/L) Object is not a function of x or y, just z.

$$
I_d(x_d, y_d) = I_i \exp \left[-\sqrt{1 + \frac{r_d^2}{d^2}} \mu_o L \right]
$$

If we assume detector is entirely in the near axis, $r_d^2 \ll d^2$ Then, simplification results,

$$
I_d=I_o\;e\;{}^{‐\mu_0L}
$$

x out of plane Infinite in x

- For $\mu_o(x,y,z) = \mu_o \prod (y/L) \prod((z z_0)/w)$ Find the intensity on the detector plane Three cases:
	- 1. Blue Line: X-Ray goes through entire object
	- 2. Red Line: X-ray misses object completely
	- 3. Orange Line: X-ray partially goes through object

$$
I_{d}(x_{d}, y_{d}) = I_{i} \exp \left[-\sqrt{1 + \frac{r_{d}^{2}}{d^{2}}} \int \mu_{o} \left((x_{d}/d)z, (y_{d}/d)z, z \right) dz \right]
$$

For the blue line, we don't have to worry that the path length through the object will increase as r_d increases. That is taken care of by the obliquity term 2 2 1 *d* $+\frac{r_d}{ }$

For the red path, $I_d(x_d,y_d) = I_i$ For the orange path, the obliquity term will still help describe the lengthened path. But we need to know the limits in z to integrate

 $\mu_o(x,y,z) = \mu_o \prod (y/L) \prod((z - z_0)/w)$

If we think of thin planes along z, each plane will form a rect in y_d of width dL/z. Instead of seeing this as a Π in y, let's mathematically consider it as a Π in z that varies in width according to the detector coordinate y_d . Then we have integration only in the variable z. The Π define limits of integration *r* 2

$$
I_d(x_d, y_d) = I_i \exp\left[-\sqrt{1 + \frac{r_d}{d^2}\mu_0} \int \prod \left(\frac{z}{dL}\right) \prod \left(\frac{z - z_0}{w}\right) dz\right]
$$

1) X-ray misses object completely

As y_d grows, first Π contracts and no overlap exists between the Π ,

functions. No overlap case when

 $dL/2y_d < z_0 - w/2$ $|y_d| > dL/(2 z_0 - w)$

 $I_d = I_i$

1) X-ray goes completely through object

As $y_d \rightarrow 0$, x-ray goes completely through object This is true for $dL/2y_d > z_0 + w/2$

$$
|y_d| < dL / (2 z_o + w)
$$

\n $I_d = I_i \exp \{-\mu_o \sqrt{1 + \frac{r_d^2}{d^2}} \ w\}$

The above diagram ignores effects of source obliquity and the factor \ in the exponential How would curve look differently if we accounted for both of these? ² *d*

Thin section Analysis

See object as an array of planes

 $\mu(x,y,z) = \tau(x,y) \delta(z - z_0)$

Analysis simplifies since only one z plane

$$
I_d = I_i e^{(-\sqrt{1 + \frac{r_d^2}{d^2}} \tau(\frac{x_d}{M}, \frac{y_d}{M}))}
$$

where $M = d/z_0$ represents object magnification

If we ignore obliquity, *M y M x d ^o d d* $I_J = I_J$ $-\tau$ Ξ

Or in terms of the notation for transmission, t,

$$
I_d = I_o t(\frac{x_d}{M}, \frac{y_d}{M})
$$

Note: No resolution loss yet. Point remains a point.