2D Sampling

Goal: Represent a 2D function by a finite set of points. - particularly useful to analysis w/ computer operations.

Points are sampled every X in *x*, every Y in *y*. How will the sampled function appear in the spatial frequency domain?

Two Dimensional Sampling: Sampled function in freq. domain

How will the sampled function appear in the spatial frequency domain?

$$
\hat{G}(u, v) = \mathcal{F}\{\hat{g}(x, y)\}
$$

= XY · III(uX) · III(vY) * *G(u, v)

Since \sum \sum ∞ $= \! - \! \infty$ ∞ $\sum_{x=-\infty}^{\infty}$ $\binom{11}{11}$ $\binom{11}{11}$ $\binom{11}{11}$ $\binom{11}{11}$ $\bigg)$ ┃ \setminus \cdot comb(uX) \cdot comb(vY) = $\sum_{n=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \sin \left(\frac{n}{u} \right)$ n=–∞ m X Y $XY \cdot \text{comb}(uX) \cdot \text{comb}(vY) = \sum_{\alpha} \sum_{\beta}$ *m v n* uX) \cdot comp(vY) = \rightarrow 0 u

$$
\hat{G}(u,v) = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} G\left(u - \frac{n}{X}, v - \frac{m}{Y}\right)
$$

The result: Replicated G(u , v), or "islands" every $1/X$ in u , and $1/Y$ in v .

Example

Let $g(x,y) = \Lambda(x/16)\Lambda(y/16)$ be a continuous function

Here we show its continuous transform G(u,v)

Now sampling the function gives the following in the space domain

$$
\hat{g}(x, y) = \text{III}\left(\frac{x}{X}\right) \text{III}\left(\frac{y}{Y}\right) g(x, y)
$$

$$
= \sum_{31-01-1387}^{\infty} \sum_{n=-\infty}^{\infty} \delta(x - nX, y - mY) \cdot g(x, y)
$$

Sampled Jmage Fourier Representation of a

Sampling the image in the space domain causes replication in the frequency domain

31-01-1387 4

1/X

Two Dimensional Sampling: Restoration of original function $H(u, v) = \prod (uX) \cdot \prod (vY)$ will filter out unwanted islands.

Let's consider this in the image domain.

$$
\hat{g}(x, y) * *h(x, y)
$$
\n
$$
= \left[\text{III}\left(\frac{x}{X}\right) \text{III}\left(\frac{y}{Y}\right) g(x, y)\right] * *h(x, y)
$$
\n
$$
= XY \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} g(nX, mY) \cdot \delta(x - nX, y - mY)
$$
\n
$$
** \frac{1}{XY} \text{sinc}\left(\frac{x}{X}\right) \text{sinc}\left(\frac{y}{Y}\right)
$$

31-01-1387 5

Two Dimensional Sampling: Restoration of original function(2)

$$
\hat{g}(x, y) * *h(x, y)
$$
\n
$$
= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} g(nX, mY) \cdot \text{sinc}\left[\frac{1}{X}(x - nX)\right] \cdot \text{sinc}\left[\frac{1}{Y}(y - mY)\right]
$$

Each sample serves as a weighting for a 2D sinc function.

Nyquist/Shannon Theory:

We must sample at twice the highest frequency in x and in y to reconstruct the original signal.

(No frequency components in original signal can be $>$ $\frac{1}{2X}$ 1 $>\frac{1}{2X}$ or $>\frac{1}{2Y}$ 1 $>\frac{1}{2V}$ *Two Dimensional Sampling: Example*

80 mm Field of View (FOV) 256 pixels

Sampling interval = $80/256 = .3125$ mm/pixel Sampling rate $= 1$ /sampling interval $= 3.2$ cycles/mm or pixels/mm Unaliased for \pm 1.6 cycles/mm or line pairs/mm

Example in spatial and frequency domain

Sampling process is Multiplication of infinite train of impulses III(x/∆x) with f(x) or convolution of III(u Δx) with F(s) \rightarrow Replication of F(s)

$$
III(\frac{x}{\tau}) = \tau \sum \delta(x - n\tau)
$$

In time domain

FT of Shah function By similarity theorem

$$
FT[III(\frac{x}{t})] = \tau III(\tau s) = \sum \delta(s - \frac{n}{\tau})
$$

 \sim 101-1387 \sim 101-13 \sim 1001 \sim 101-1387 \sim 101-1387

Example in Time or Spatial domain

Sampling theorem

A function sampled at uniform spacing can be recovered if

 $\mathcal{O}(\mathcal{O}(\log n))$ is the set of $\mathcal{O}(\log n)$ is the set of $\mathcal{O}(\log n)$ is the set of $\mathcal{O}(\log n)$

O 2*^s* $\bf 1$ $\tau \leq$

Aliasing: = overlap of replicated spectra

Properties of Sampling I

1) Truncation in Time Domain: Truncation of $f(x)$ to finite duration $T =$ Multiplying $f(x)$ by Rect pulse of $T =$ Convolving the spectrum with infinite sinx/x

 $\mathcal{O}(\mathcal{O}(\log n))$ is the set of $\mathcal{O}(\log n)$ in $\mathcal{O}(\log n)$ is the set of $\mathcal{O}(\log n)$

 $T = N \Delta t$ (Truncation window) $1/T = 1/N\Delta t = \Delta s$ spectrum sample spacing (in DFT)

Since Truncation is:

Multiply f(t) with window $\prod_{i}(\frac{t}{T})$

or convolve F(s) with narrow sin(x)/x Therefore, it extends frequency range (to infinite)

Spectrum of truncation function is always infinite and Truncation destroy bond limitedness & produce alias.

 $\mathcal{O}(\mathcal{O}(\log n))$ is the set of $\mathcal{O}(\log n)$ is the set of $\mathcal{O}(\log n)$ is the set of $\mathcal{O}(\log n)$

This causes Unavoidable Aliasing

Properties of sampling III

3) Since Sampling is multiplication of shah function with continues function Or convolution of F(s) with

$$
G(s) = \tau III(\tau s) * F(s)
$$

 $\mathbf{G}(s) = \tau \mathbf{H}(\tau s) * F(s)$
 $\rightarrow \frac{\text{Convolution of function with an impulse}}{\text{copy of that function}}$
 $\rightarrow \frac{\text{Replace } F(s) \text{ every}}{\tau}$ **Convolution of function with an impulse = copy of that function**

 $\mathcal T$

Properties of sampling IV

4) Interpolation or **Recovering original function (D/A) To recover original function, we should eliminate the replicas of F(s) and keep one.**

Either Truncation in Freq should be done.

$$
\blacktriangleright G(s) \prod_{i} (\frac{s}{2s_i}) = F(s) \qquad s_{\circ} \le s_1 \le \frac{1}{\tau} - s_{\circ}
$$

Or convolving sampled g(x) with interpolation sinc

$$
f(x) = FT^{-1}(Fs) = g(x) * 2s_1 \frac{\sin(2\pi s_1 x)}{2\pi s_1 x}
$$

 \mathcal{S}_1 -dimensional dependent of \mathcal{S}_2 , \mathcal{S}_3 , \mathcal{S}_4 , \mathcal{S}_5 , \mathcal{S}_6 , \mathcal{S}_7 , \mathcal{S}_8 , \mathcal{S}_9 , $\mathcal{$

Review of Digitizing Parameters Depend on digitizing equipment: Truncation window Max F.O.V of image Sampling aperture Sensitivity of scanning spot Sampling spacing Spot diameter (adjustable) Interpolation function \longrightarrow Displaying spot

 $\mathcal{O}(\mathcal{O}(\log n))$ is the set of $\mathcal{O}(\log n)$ is the set of $\mathcal{O}(\log n)$ is the set of $\mathcal{O}(\log n)$

Review of Sampling Parameters

To have good spectra resolution (small Δs) and minimum aliasing, parameters N , T and Δt defined.

Δt as small as possible

T as long as possible

compressed FT

small Δs

To control aliasing:

- Bigger sampling aperture

- Smaller sampling spacing (over same filter)

- Adjust image freq. S^m at most Sm=1/2Δt

 \mathcal{S}_1 -defined by \mathcal{S}_2 -defined by \mathcal{S}_3 -defined by \mathcal{S}_4 -defined by \mathcal{S}_5 -defined by \mathcal{S}_6

Anti aliasing Filter:

1) Using rectangular aperture twice spacing Energy at frequency above S0>1/2Δt is attenuated. Original image freq. F(s) from 1/Δt reduce to 1/2Δt

 \mathcal{S}_1 -defined by \mathcal{S}_2 -defined by \mathcal{S}_3 -defined by \mathcal{S}_4 -defined by \mathcal{S}_5 -defined by \mathcal{S}_6

Examples of whole Sampling Process on a Band limited Signal

Original signal:

Truncating the signal:

Convolving signal with sampling aperture:Sampling aperture. sin tryca transler junction. $\overline{\mathbf{Tr} \mathbf{f}}$ Sampling specture $\frac{1}{T}\sigma(\beta)$ E. pt. $+1$ $+$ $\frac{15}{10} \frac{5}{6} \frac{1}{10} \frac{1}{10} \frac{1}{10}$ Spectrum of $\epsilon_{\rm eff}$ $\frac{\sin(\pi x)g}{\pi x} \left[F(x) \pi T \frac{\sin(\log x)}{\pi x T} \right]$ Trundated signal $RCD =$ convulved with sampling aperture. $\ell \nu m(\frac{1}{l}) \cdot \frac{1}{l} n(\frac{1}{l})$ Ù kJ ^I \rightarrow

 \mathcal{S}_1 -dimensional \mathcal{S}_2 and \mathcal{S}_3 31-01-1387 \mathcal{S}_4 31-01-1387 \mathcal{S}_5 31-01-1387 \mathcal{S}_6 31-01-1387 \mathcal{S}_7 31-01-1387 \mathcal{S}_8 31-01-1387 \mathcal{S}_8 31-01-1387 \mathcal{S}_9 31-01-1387 \mathcal{S}_9 31-01-

Sampling the signal:

Discrete Fourier Transform

 $g(x)$ is a function of value for $-\infty < x < \infty$

We can only examine $g(x)$ over a limited time frame, $0 < x < L$

Assume the spectrum of $g(x)$ is approximately bandlimited; no frequencies $>$ B Hz.

Note: this is an approximation; a function can not be both timelimited and bandlimited.

Sampling and Frequency Resolution

We will sample at 2B samples/second to meet the Nyquist rate.

$$
N = \frac{L}{\frac{1}{2}B} = 2BL
$$
 We sample N points.

frequency resolution L 1 ${\bf N}$ 2B # of samples frequency range $=$ $\frac{2B}{ } = \frac{1}{ } =$

Transform of the Sampled Function

$$
\hat{f}(x) = \sum_{n=0}^{N-1} \frac{1}{2B} \cdot f\left(\frac{n}{2B}\right) \cdot \delta\left(x - \frac{n}{2B}\right)
$$

$$
\hat{F}(u) = \sum_{n=-\infty}^{\infty} F(u - 2nB)
$$

Another expression for $F(u)$ comes from $\operatorname{\hat{F}}(u)$ comes from $\operatorname{\mathcal{F}}\nolimits\{\operatorname{\hat{f}}\nolimits\}$ ˆ $\hat{F}(u)$ comes from $\mathcal{F}\bigl\{\hat{f}(x)\bigr\}$ $\mathcal U$

$$
\hat{F}(u) = \sum_{n=0}^{N-1} \frac{1}{2B} f\left(\frac{n}{2B}\right) \cdot \mathcal{F}\left\{\delta\left(x - \frac{n}{2B}\right)\right\} \quad \text{Views input as linearcombination of deltafunctions\n
$$
\hat{F}(u) = \sum_{n=0}^{N-1} f(n) e^{-i2\pi \cdot \frac{n\mu}{2B}} \quad \text{where } f(n) \equiv \frac{1}{2B} f\left(\frac{n}{2B}\right)
$$
\n
$$
\int_{31-01-138\sqrt[n]{t} \text{ is still continuous.}}^{3N-1} \text{ with } f(n) \geq \frac{1}{2B} f\left(\frac{n}{2B}\right)
$$
$$

31-01-1387 28

Transform of the Sampled Function (2)

$$
\hat{F}(u) = \sum_{n=0}^{N-1} f(n)e^{-i\cdot 2\pi \cdot \frac{n\mu}{2B}} \quad \text{where } f(n) \equiv \frac{1}{2B}f\left(\frac{n}{2B}\right)
$$

To be computationally feasible, we can calculate $F(u)$ at only a finite set of points. ˆ $\overline{}$

Since $f(x)$ is limited to interval $0 < x < L$, can be sampled every $\frac{1}{L}$ Hz. 1 $\hat{\mathrm{F}}(u)$ *u*

Discrete Fourier Transform

$$
\hat{F}(\frac{m}{L}) \equiv F(m) = \sum_{n=0}^{N-1} f(n)e^{-i2\pi \frac{nm}{2BL}}
$$

 $2BL = N =$ number of samples

Discrete Fourier Transform (DFT):
\n
$$
F(m) = \sum_{n=0}^{N-1} f(n)e^{-i2\pi \frac{nm}{2BL}} = \sum_{n=0}^{N-1} f(n)e^{-i2\pi \frac{nm}{N}}
$$

Number of samples in x domain = number of samples in frequency domain.

Periodicity of the Discrete Fourier Transform

$$
\text{DFT:} \quad \text{F(m)} = \sum_{n=0}^{N-1} \text{f}(n)e^{-i2\pi \frac{nm}{2BL}} = \sum_{n=0}^{N-1} \text{f}(n)e^{-i2\pi \frac{nm}{N}}
$$

F(m) repeats periodically with period N

- 1) Sampling a continuous function in the frequency domain $[F(u) -f(n)]$ causes replication of f(n) (example coming in homework)
- 2) By convention, the DFT computes values for $m=0$ to N-1
	- 1 to N -1 0 to $\frac{1}{2}$ - 1 ${\rm m}$ $=$ 0 2 ${\bf N}$ 2 $\frac{N}{2}$ – 1 positive frequencies $+1$ to N - 1 negative frequencies DC component

Properties of the Discrete Fourier Transform

- Let $f(n) \longrightarrow F(m)$
	- 1. Linearity If $f(x) \leftrightarrow F(u)$ and $g(x) \leftrightarrow G(u)$

 $af(x) + bg(x) \rightarrow aF(u) + bG(u)$

2. Shifting

$$
D.F.T.\{f(n-k)\} \to F(m)e^{-i\cdot 2\pi \cdot \frac{km}{N}}
$$

Example : if k=1 \rightarrow there is a 2π shift as m varies from 0 to N-1 *Inverse Discrete Fourier Transform*

If
$$
f(n) \rightarrow F(m)
$$

\n
$$
D.F.T.^{-1} \{F(m) \} \equiv \frac{1}{N} \sum_{m=0}^{N-1} F(m) \cdot e^{-i \cdot 2\pi \cdot \frac{nm}{N}} = f(n)
$$

Why the $1/N$? Let's take a look at an example $f(n) = \{1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \}$ $N = 8 =$ number of samples. $=1\,$ $= 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0$ $F(m) = \sum f$ $\frac{N-1}{i \cdot 2}$ 0 *n* n $=\nabla f \cdot e^{i\omega Z}$ 8 $=\sum_{n=1}^{\infty} f_n \cdot e^{+i \cdot 2\pi \cdot \frac{n m}{8}}$ $m = \sum_i$ $\cdot e$ π for all values of m continued...

31-01-1387 33

Inverse Discrete Fourier Transform (continued)

31-01-1387 34 Now inverse, $\text{f}\left(n \right) = \frac{1}{\text{N}}\sum\limits_{\text{N}} \text{F}\!\left(\text{m} \right) \!\cdot e^{ + i \cdot 2 \pi \cdot \frac{n n}{\text{N}}}$ $f(n) = 0$ for $m \neq 0, N, 2N$ 1 1 $f(n)$ 1 1 1 1 $f(0) = \frac{1}{8} \cdot 8 = 1$ $f(n) = \frac{1}{8}$ \sum $F(m)$ $\cdot e^{-\frac{1}{2}n}$ $f(n) = \frac{1}{N}$ \sum $F(m)$ $\cdot e^{-\frac{1}{2}n^2}$ N N N 2 2 ${\bf N}$ 1 0 $\mathrm{N-}1$ 0 *n* 2 ${\bf N}$ $=\frac{1}{N}$ > $F(m)$. $=\frac{1}{2}\cdot 8=$ $\mathrm{N-}1$ 0 *m* 2 8 $=\frac{1}{2}$ > $F(m)$. $\mathbf{N-}1$ 0 *m* 2 ${\bf N}$ $=\frac{1}{N}\sum F(m)$. \int $\bigg)$ \setminus $\bigg($ $=\frac{1}{N}\left|\frac{1-e}{1+\frac{1}{2\pi}}\right|$ $=$ $\frac{1}{1}$ $+$ $\iota\cdot$ λ $\pi\cdot$ $\sum\nolimits_{0}^{N-}$ $\sum^{\mathbf{n}-1} \mathrm{F}(\mathrm{m}) \cdot e^{+i \cdot 2\pi \cdot \mathbf{r}}$ $\sum_{i=1}^{N-1} F(m) \cdot e^{+i \cdot 2\pi i}$ $\sum_{i=1}^{N-1} F(m) \cdot e^{+i \cdot 2\pi i}$ *e e* $n = \frac{1}{N}$ $\frac{1}{\frac{1}{N} \cdot \frac{1}{2} \cdot \frac{m}{N}}$ *r r r* $n = \frac{1}{2}$ > $\Gamma(m) \cdot e$ $n = \frac{1}{2}$ > $\Gamma(m)$ $\cdot e$ $n = \frac{1}{N}$ \geq $\Gamma(m)$ $\cdot e$ *m* $i \cdot 2 \pi \cdot \frac{nm}{n}$ $i \cdot 2 \pi \cdot \frac{nm}{2}$ $i \cdot 2 \pi \cdot \frac{nm}{n}$ *i i N N* π π For $n=0$, kernel is simple For other values of n, this identity will help

