2D Sampling

Goal: Represent a 2D function by a finite set of points.particularly useful to analysis w/ computer operations.

Points are sampled every X in *x*, every Y in *y*.How will the sampled function appear in the spatial frequency domain?

Two Dimensional Sampling: Sampled function in freq. domain

How will the sampled function appear in the spatial frequency domain?

$$\hat{\mathbf{G}}(u,v) = \mathcal{F}\{\hat{\mathbf{g}}(x,y)\}$$

= XY · III(uX) · III(vY) **G(u,v)

Since $XY \cdot \operatorname{comb}(uX) \cdot \operatorname{comb}(vY) = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \delta\left(u - \frac{n}{X}, v - \frac{m}{Y}\right)$

$$\hat{G}(u,v) = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} G\left(u - \frac{n}{X}, v - \frac{m}{Y}\right)$$

The result: Replicated G(u, v), or "islands" every 1/X in u, and 1/Y in v.

Example

Let $g(x,y) = \Lambda(x/16)\Lambda(y/16)$ be a continuous function Here we show its continuous transform G(u,v)

Now sampling the function gives the following in the space domain

$$\hat{g}(x, y) = III\left(\frac{x}{X}\right)III\left(\frac{y}{Y}\right)g(x, y)$$

$$= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \delta(x - nX, y - mY) \cdot g(x, y)$$

Fourier Representation of a Sampled Image

Sampling the image in the space domain causes replication in the frequency domain

31-01-1387

1/X

Two Dimensional Sampling: Restoration of original function $H(u,v) = \prod(uX) \cdot \prod(vY)$ will filter out unwanted islands.

Let's consider this in the image domain.

$$\hat{g}(x, y) * *h(x, y)$$

$$= \left[III\left(\frac{x}{X}\right) III\left(\frac{y}{Y}\right) g(x, y) \right] * *h(x, y)$$

$$= XY \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} g(nX, mY) \cdot \delta(x - nX, y - mY)$$

$$* *\frac{1}{XY} \operatorname{sinc}\left(\frac{x}{X}\right) \operatorname{sinc}\left(\frac{y}{Y}\right)$$

31-01-1387

Two Dimensional Sampling: Restoration of original function(2)

$$\hat{g}(x, y) * *h(x, y) = \sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} g(nX, mY) \cdot \operatorname{sinc}\left[\frac{1}{X}(x - nX)\right] \cdot \operatorname{sinc}\left[\frac{1}{Y}(y - mY)\right]$$

Each sample serves as a weighting for a 2D sinc function.

Nyquist/Shannon Theory:

We must sample at twice the highest frequency in x and in y to reconstruct the original signal.

(No frequency components in original signal can be $> \frac{1}{2X}$ or $> \frac{1}{2Y}$)

Two Dimensional Sampling: Example

80 mm Field of View (FOV) 256 pixels

Sampling interval = 80/256 = .3125 mm/pixel Sampling rate = 1/sampling interval = 3.2 cycles/mm or pixels/mm Unaliased for ± 1.6 cycles/mm or line pairs/mm

Example in spatial and frequency domain

Sampling process is Multiplication of infinite train of impulses III($x/\Delta x$) with f(x) or convolution of III($u\Delta x$) with F(s) \rightarrow Replication of F(s)

$$III(\frac{x}{\tau}) = \tau \sum \delta(x - n\tau)$$

In time domain

FT of Shah function By similarity theorem

$$FT[III(\frac{x}{t})] = \tau III(\tau s) = \sum \delta(s - \frac{n}{\tau})$$

Example in Time or Spatial domain

Sampling theorem

A function sampled at uniform spacing can be recovered if

Aliasing: = overlap of replicated spectra

Properties of Sampling I

Truncation in Time Domain:
 Truncation of f(x) to finite duration T =
 Multiplying f(x) by Rect pulse of T =
 Convolving the spectrum with <u>infinite sinx/x</u>

 $T = N \Delta t$ (Truncation window) $1/T = 1/N\Delta t = \Delta s$ spectrum sample spacing (in DFT)

Since Truncation is:

Multiply f(t) with window $\prod_{T} (\frac{t}{T})$

or convolve F(s) with narrow sin(x)/x Therefore, it extends frequency range (to infinite)

Spectrum of truncation function is always infinite and Truncation destroy bond limitedness & produce alias.

This causes Unavoidable Aliasing

Properties of sampling III

3) Since Sampling is multiplication of shah function with continues function Or convolution of F(s) with

$$G(s) = \tau HI(\tau s) * F(s)$$

Convolution of function with <u>an impulse</u> = copy of that function

Replicate F(s) every

Properties of sampling IV

4) Interpolation or Recovering original function (D/A) To recover original function, we should eliminate the replicas of F(s) and keep one.

Either Truncation in Freq should be done.

$$G(s)\prod(\frac{s}{2s_1}) = F(s) \qquad s_\circ \le s_1 \le \frac{1}{\tau} - s_\circ$$

Or convolving sampled g(x) with interpolation sinc

$$f(x) = FT^{-1}(Fs) = g(x) * 2s_1 \frac{\sin(2\pi s_1 x)}{2\pi s_1 x}$$

Review of Digitizing Parameters Depend on digitizing equipment: Truncation window Max F.O.V of image Sampling aperture Sensitivity of scanning spot Sampling spacing Spot diameter (adjustable) Interpolation function Displaying spot

Review of Sampling Parameters

To have good spectra resolution (small Δs) and minimum aliasing, parameters N, T and Δt defined.

Δt as small as possible

T as long as possible <<

compressed FT

 $-small \Delta s$

To control aliasing:

- Bigger sampling aperture
- Smaller sampling spacing (over same filter)
- Adjust image freq. S_m at most $S_m = 1/2\Delta t$

Anti aliasing Filter:

 Using rectangular aperture twice spacing Energy at frequency above S₀>1/2Δt is attenuated. Original image freq. F(s) from 1/Δt reduce to 1/2Δt

Examples of whole Sampling Process on a Band limited Signal

Original signal:

Truncating the signal:

Sampling the signal:

Discrete Fourier Transform

g(x) is a function of value for $-\infty < x < \infty$

We can only examine g(x) over a limited time frame, 0 < x < L

Assume the spectrum of g(x) is approximately bandlimited; no frequencies > B Hz.

Note: this is an approximation; a function can not be both timelimited and bandlimited.

Sampling and Frequency Resolution

We will sample at 2B samples/second to meet the Nyquist rate.

$$N = \frac{L}{\frac{1}{2B}} = 2BL$$
 We sample N points.

 $\frac{\text{frequency range}}{\text{\# of samples}} = \frac{2B}{N} = \frac{1}{L} = \text{frequency resolution}$

Transform of the Sampled Function

$$\hat{\mathbf{f}}(x) = \sum_{n=0}^{N-1} \frac{1}{2B} \cdot \mathbf{f}\left(\frac{n}{2B}\right) \cdot \delta\left(x - \frac{n}{2B}\right)$$

$$\hat{F}(u) = \sum_{n = -\infty}^{\infty} F(u - 2nB)$$

Another expression for $\hat{F}(u)$ comes from $\mathcal{F}\{\hat{f}(x)\}$

$$\hat{F}(u) = \sum_{n=0}^{N-1} \frac{1}{2B} \cdot f\left(\frac{n}{2B}\right) \cdot F\left\{\delta\left(x - \frac{n}{2B}\right)\right\}$$
Views input as linear
combination of delta
functions
$$\hat{F}(u) = \sum_{n=0}^{N-1} f(n) \ e^{-i \cdot 2\pi \cdot \frac{nu}{2B}}$$
where $f(n) \equiv \frac{1}{2B} f\left(\frac{n}{2B}\right)$

<u>41-01-1387</u> is still continuous.

Transform of the Sampled Function (2)

$$\hat{F}(u) = \sum_{n=0}^{N-1} f(n) e^{-i \cdot 2\pi \cdot \frac{nu}{2B}} \quad \text{where } f(n) \equiv \frac{1}{2B} f\left(\frac{n}{2B}\right)$$

To be computationally feasible, we can calculate $\hat{F}(u)$ at only a finite set of points.

Since f(x) is limited to interval 0 < x < L, $\hat{F}(u)$ can be sampled every $\frac{1}{L}$ Hz. Discrete Fourier Transform

$$\hat{\mathbf{F}}\left(\frac{m}{L}\right) \equiv \mathbf{F}(\mathbf{m}) = \sum_{n=0}^{N-1} \mathbf{f}(n) e^{-i2\pi \frac{nm}{2BL}}$$

2BL = N = number of samples

Discrete Fourier Transform (DFT):

$$F(m) = \sum_{n=0}^{N-1} f(n)e^{-i2\pi \frac{nm}{2BL}} = \sum_{n=0}^{N-1} f(n)e^{-i2\pi \frac{nm}{N}}$$

Number of samples in x domain = number of samples in frequency domain.

Periodicity of the Discrete Fourier Transform

DFT:
$$F(m) = \sum_{n=0}^{N-1} f(n) e^{-i2\pi \frac{nm}{2BL}} = \sum_{n=0}^{N-1} f(n) e^{-i2\pi \frac{nm}{N}}$$

F(m) repeats periodically with period N

- Sampling a continuous function in the frequency domain [F(u) ->f(n)]causes replication of f(n) (example coming in homework)
- 2) By convention, the DFT computes values for m=0 to N-1
 - m = 0DC component $0 \text{ to } \frac{N}{2} 1$ positive frequencies $\frac{N}{2} + 1 \text{ to } N 1$ negative frequencies

Properties of the Discrete Fourier Transform

- Let $f(n) \longrightarrow F(m)$
 - 1. Linearity If $f(x) \leftrightarrow F(u)$ and $g(x) \leftrightarrow G(u)$

 $af(x) + bg(x) \rightarrow aF(u) + bG(u)$

2. Shifting

$$D.F.T.\left\{f(n-k)\right\} \rightarrow F(m)e^{-i\cdot 2\pi \cdot \frac{km}{N}}$$

Example : if k=1 \longrightarrow there is a 2π shift as m varies from 0 to N-1 Inverse Discrete Fourier Transform

If
$$f(n) \longrightarrow F(m)$$

 $D.F.T.^{-1} \left\{ F(m) \right\} \equiv \frac{1}{N} \sum_{m=0}^{N-1} F(m) \cdot e^{-i \cdot 2\pi \cdot \frac{nm}{N}} = f(n)$

continued...

Inverse Discrete Fourier Transform (continued)

 $f(n) = \frac{1}{N} \sum_{i=1}^{N-1} F(m) \cdot e^{+i \cdot 2\pi \cdot \frac{nm}{N}}$ Now inverse, m=0 $f(n) = \frac{1}{8} \sum_{n=1}^{N-1} F(m) \cdot e^{+i \cdot 2\pi \cdot \frac{nm}{8}}$ $f(0) = \frac{1}{8} \cdot 8 = 1$ For n=0, $f(n) = \frac{1}{N} \sum_{n=1}^{N-1} F(n) \cdot e^{+i \cdot 2\pi \cdot \frac{nm}{N}}$ kernel is simple n=0For other values $\sum_{0}^{N-1} \frac{1}{r} = \frac{1-r^{N}}{1-r}$ of n, this identity will help $\mathbf{f}(n) = \frac{1}{\mathbf{N}} \left(\frac{1 - e^{+i \cdot 2\pi \cdot \frac{m\mathbf{N}}{\mathbf{N}}}}{1 - e^{+i \cdot 2\pi \cdot \frac{m}{\mathbf{N}}}} \right)$ f(n) = 0 for $m \neq 0, N, 2N$

31-01-1387

