fMRI based on Blood Oxygenation Level Dependence (BOLD) contrast

Dr M A Oghabian

www.oghabian.net

Functional vs Structural Imaging

Nuclear Medicine is to physiology as Radiology is to anatomy

Function vs structure

• Structure

→ Anatomical/Morphological imaging

• Function

- Cell function (Molecular imaging)
	- Metabolic information \bullet
- Tissue/organ function (Physiological imaging)
- **+ Human Functions (Functional imaging)**

What is fMRI?

- Functional Magnetic Resonance Imaging (fMRI): uses MRI to indirectly measure brain activity
- Known for over 100 yrs. that blood flow and blood oxygenation are linked to neural activity– only since the early 1990's was fMRI developed (Ogawa & Kwong)
- Based on the assumption that neuronal activity requires $O₂$ which is carried by the blood; increased blood flow and resulting hemodynamics are foundation to fMRI

fMRI vs. PET

- fMRI does not require exposure to radiation
	- fMRI can be repeated
- fMRI has better spatial and temporal resolution
	- requires less averaging
	- can resolve brief single events
- MRI can obtain anatomical and functional images within same session
- PET can provide more direct measures about metabolic processes

Spatial and Temporal Resolution of Various functional imaging methods

.og size (mm)

fMRI BOLD imaging is based on inherent Contrast Agents

- Contrast agent is a Substance that alter magnetic susceptibility of tissue, leading to changes in MR signal
	- Affects local magnetic homogeneity: decrease in T1 or T_2^*
- Two types
	- Exogenous: Externally applied, non-biological compounds (e.g., Gd-DTPA)
	- Endogenous: Internally generated biological compound (e.g., deoxyhemoglobin, dHb)

Blood Deoxygenation affects T₂^{*} Decay

Thulborn et al., 1982

Deoxygenated Blood \rightarrow Signal Loss

Oxygenated blood? No signal loss…

Deoxygenated blood? Signal loss!!!

Images from Huettel, Song & McCarthy, 2004, Functional Magnetic Resonance Imaging

History of fMRI

MRI

- -1971: MRI Tumor detection (Damadian)
- -1973: Lauterbur suggests NMR could be used to form images
- -1977: clinical MRI scanner patented
- -1977: Mansfield proposes echo-planar imaging (EPI) to acquire images faster

fMRI

- -1990: Ogawa observes BOLD effect with T2*
	- blood vessels became more visible as blood oxygen decreased
- -1991: Belliveau observes first functional images using a contrast agent
- -1992: Ogawa et al. and Kwong et al. publish first functional images using BOLD signal

Ogawa

BOLD Endogenous Contrast

- Blood Oxyenation Level Dependent Contrast
	- Deoxyhemoglobin is paramagnetic
	- Magnetic susceptibility of blood increases linearly with increasing Deoxygenation
- Oxygen is increased during passage through capillary bed
	- Brain arteries are fully oxygenated
	- During activation Venous (and capillary) blood has increased proportion of Doxyhemoglobin
	- Then oxygen is compensated in veins
	- Difference between oxy and deoxy states becomes greater for veins \rightarrow BOLD sensitive to venous changes

Measuring Deoxyhemoglobin

- fMRI measurements are of amount of oxyhemoglobin per voxels in Venus pool
- We assume that amount of oxyhemoglobin in vein is predictive of neuronal activity

Vasculature

Source: Menon & Kim, TICS

BOLD signal

Stimulus to BOLD

TRENDS in Neurosciences

Source: Arthurs & Boniface, 2002, *Trends in Neurosciences*

BOLD signal

Physiology of BOLD Response (The Hemodynamic Response)

Post-Synaptic Potentials

- The inputs to a neuron (post-synaptic potentials) increase (excitatory PSPs) or decrease (inhibitory PSPs) the membrane voltage
- If the summed PSPs at the axon hillock push the voltage above the threshold, the neuron will fire an action potential

BOLD temporal Correlations

Local Field Potentials (LFP) reflect post-synaptic potentials

similar to what EEG (ERPs) and MEG measure

Multi-Unit Activity (MUA) reflects action potentials

- similar to what most electrophysiology measures
- BOLD activity is more closely related to LFPs than MUA

BOLD spatial correlation

Data Source: Disbrow et al., 2000*, PNAS* Figure Source, Huettel, Song & McCarthy, *Functional Magnetic Resonance Imaging*

fMRI Measures the Population Activity

- fMRI may not match single neuron physiology results
- population activity depends on
	- how active the neurons are
	- how many neurons are active

Proc Biol Sci

Raichle & Posner, Images of Mind cover image Ideas from: Scannell & Young, 1999,

Functional connectivity and networking is important

Will BOLD activation from the blue voxel reflect:

- *output of the black neuron (action potentials)?*
- *excitatory input (green synapses)?*
- *inhibitory input (red synapses)?*
- *inputs from the same layer?*
- *feedforward projections (from lower-tier areas)?*
- *feedback projections (from higher-tier areas)?*

Basic Form of Hemodynamic Response

BOLD Time Course

Amplitude of the HDR

- Peak signal change dependent on:
	- Brain region
	- Task parameters
	- Voxel size
	- Field Strength

Why does the hemodynamic response matter?

- Delay in the hemodynamic response (HDR)
	- Hemodynamic activity lags neuronal activity
- Amplitude of the HDR
- Variability in the HDR
- Linearity of the HDR
- HDR as a relative measure

The Hemodynamic Response Lags Neural Activity

How to perform fMRI experiment?

Constructing Research hypotheses

Functional Magnetic Resonance Imaging 2e, Figure 9.3

© 2009 Sinauer Associates, Inc.

Blocked vs. Event-related

SPACED MIXED TRIAL: À ▲

RAPID MIXED TRIAL: AALLA 蓝 \mathbf{A} A 為良 A A 盧 **AGE** A A A \mathbf{A} 矗 ▲ 温 A A **AB** AB 「義」 **图 真**

How to perform fMRI experiment?

FMRI – Week 6 – BOLD fMRI Scott Huettel, Duke University

A Simple Experiment

Condition changes every 16 seconds (8 volumes per Block), 17 block One volume (12 slices) every 2 seconds

for 272 seconds (4 minutes, 32 seconds)

What data do we start with

- 12 slices $*$ 64 voxels x 64 voxels = 49,152 voxels
- Each voxel has 136 time points
- Therefore, for each run, we have 6.7 million data points
- We often have several runs for each experiment

Why do we need stats?

We could, in principle, analyze data by voxel surfing: move the cursor over different areas and see if any of the time courses look interesting

Here's one that responds well whenever there's intact objects

Types of Errors

Is the region truly active?

Yes No Does our stat test indicate Does our stat test indicate p value: that the region is active? that the region is active? probability of a Type I error HIT **Type I** Yes Error e.g., $p < 0.05$ "There is less than a 5% probability that a voxel our No Type II **Correct** stats have declared as Rejection Error "active" is in reality NOT active

Statistical Approaches

t-tests

• **compare activation levels between two conditions (eg. Activation and Rest)**

correlations

• **model activation and see whether any areas show a similar pattern**

Fourier analysis

• **Do a Fourier analysis to see if there is energy at your paradigm frequency**

Fourier analysis images

Effect of Thresholds

81

97

113

Complications

• There are all sorts of statistical problems:

What's wrong with these data?

 $r = .24$ 6% of variance $p < .05$

1. data may be contaminated by artifacts (e.g., head motion, breathing artifacts)

2. "significant" voxels by chance alone. $(P=.05) * 49,152 = 2457$ voxels

3. many assumptions of statistics are false. (e.g. adjacent voxels uncorrelated with each other; adjacent time points uncorrelated with one another)

Source of errors

Let's create a time course for one voxel Intact Objects is greater than Scrambled

How this signal is build up?

Response to Intact Objects which is 4X greater than Scrambled Objects

Now let's add some variability due to head motion

…though really motion is more complex

- Head motion can be quantified with 6 parameters given in any motion correction algorithm
	- x translation
	- y translation
	- z translation
	- xy rotation
	- xz rotation
	- yz rotation
- For simplicity, I've only included parameter one in our model
- Head motion can lead to other problems not predictable by these parameters

Adding linear drift from magnet noise (e.g., parts warm up) or physiological noise (e.g., subject's head sinks

Add a dash of low frequency noise from magnet noise or physiological noise (e.g., subject's cycles of alertness/drowsiness)

Adding some high frequency noise from magnet noise or physiological noise (e.g., subject's breathing rate and heartrate

When we add these all together, we get a realistic time course

Now let's be the experimenter

- First, we take our time course and normalize it using z scores
- $z = (x mean)/SD$
- normalization leads to data where: mean = zero SD = 1

Major components of post-processing and Analysis

- 1. Quality control (data free from noise and artifacts)
- 2. Motion correction
- 3. Slice timing correction
- 4. Spatial normalization (alignment into common spatial framework)
- 5. Spatial smoothing
- 6. Temporal filtering
- 7. Statistical modeling (GLM & data fitting)
- 8. Statistical Inference (estimation of statistical significance)
- 9. Visualization

fMRI Analysis with emphasis on the general linear model (GLM)

Using General Linear Model

- T-tests, correlations and Fourier analysis work for simple designs.
- The General Linear Model (GLM) can be used

Why is the GLM so great?

- Any combination of contrasts can be used (e.g., intact scrambled, scrambled - baseline) with one GLM rather than multiple correlations
- the GLM allows for combining data within subjects and between subjects
- the GLM allows you to model things that may account for variability in the data (e.g., head motion)
- GLM allows using more complex designs (e.g., factorial designs)

We create a GLM with 2 predictors

unexplained variance

GLM for an activation

GLM for 2 activations

Visual activation area

Language task (WG) on left-handed patient with Temporoparietal mass

Software package for fMRI analysis

- SPM: include connectivity modeling tools, psychophysioligical interaction, Dynamic Causal Moleding
- FSL: novel modeling techniques (eg RANDOMISE modules), ICA for resting-state, DTI analysis, FSLview & probabilistic Atlases, enable computing clusters
- AFNI: Powerful visualization abilities, integrating volume and cortical surfaces
- BrainVoyager: commercial on all computing platforms
- Freesurfer: for cortical surfaces and anatomical parcellations; can incorporate fMRI data from SPM/FSL

Pre-requisities for fMRI analysis

- Probability and Statistics
- Computer programming: ATHLAB/python/UNIX shell scripting
- Linear Algebra: GLM/image processing
- MRI: data acquisition/artifacts
- Neurophysiology & biophysics: Neuron activities & blood flow/hemodynamic response
- Signal & Image processing: Fourier analysis based processing

