fMRI Analysis Techniques

NIAG

Tehran University of Medical Science

Outline

An overview on the whole procedure of data analysis in fMRI

General fMRI Preprocessing steps

statistical analysis Methods (GLM & ICA)

Overview

RCSTIN

กเคา

fMRI time series

RCSTIM

fMRI Image Preprocessing

N E U R O I M A G I

NG&ANA

L Y

S I S T E A M

ึกเกิ

What is preprocessing?

Correcting for non-task-related variability in experimental data

 Usually done without consideration of experimental design; thus, pre-analysis

Preprocessing Steps

- Data Transfer, and format Conversion
- Removal of first few volumes
- Motion Correction
- Slice Timing Correction
- Spatial Smoothing
- Filtering (Spatial & Temporal)
- Global intensity normalization

Data Format exchange

Conventional formats in different MRI system:

- > ANALYZE
 - A file with extension *.hdr containing header information
 - * A file with extension *.img containing image raw data
- > NIFTI
 - Usually a *.nii file containing 4D information
- > AFNI
 - * Header information in *.HEAD
 - * Image raw data in *.BRIK

Removal of first few volumes

- Usually image volumes corresponding to first 10-12 seconds are removed from the sequence
- This is to make sure that spin system is in the steady state condition in acquired images
- Thus unwanted changes in image weight are removed

Head Motion Correction:

- Even with padding around the
- head people move in the scanner

- Motion correction realigns all images to a common reference
- **3-12** parameters: 3 translation, 3 rotation, Skewness
 - Minimization of some cost function

Slice Timing Correction

a Each slice is scanned at a slightly different time

Slice timing correction shifts the *data* (each voxel's time series) as if whole volume was acquired at exactly the same time

1040

1030

1020

1010

1000

กเคา

990 0

20

Spatial & Temporal Filtering: Spatial Filtering 20 15 10 5 **Temporal filtering** C -5 -10 HP -15 -20 1060 -25 20 1050

Global intensity normalization

Why:

variation in the intensity between different volumes

 How: compute 4D average and make it the same across subjects/sessions

Statistical Analysis: General Linear Model

N E U R O

M A G

I N G &

A N A

L Y

S I S T E A M

NIAT

Outline

Aim:

detecting the status of each voxel (active rest)?

Method:

General Linear Model (GLM)

Statistical Inference:

Finding the Brain Activity and thresholding

กเคт

Basic rule for detecting the status of each voxel (active rest)?

The Role of Hemodynamic Response Function (HRF)

N

EU

R O I M

A

G I N

G&ANALYS

I S T E A M

ิกเคT

Page 18

ึกเกิ

GLM: General Linear Model (A simple view)

RCSTIM

ิกเกT

GLM: General Linear Model

ากกา

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

Contrast=[1 0] COPE = $1 \times \beta_1 + 0 \times \beta_2$ T-stat= COPE / STD(COPE)

5

Thresholding

Z (Gaussian Distributed), t (T-student), or F (Fisher) statistics

C.

Group fMRI Analysis:

Which brain regions are consistently activated in a population in response to a given contrast of experimental conditions?

กเคา

Two Groups GLM Analysis

Data from one voxel

Contrasts: Two Groups GLM Analysis

1. Does Group 1 by itself differ from 0? C = [1 0], Contrast = $C^*\beta = \beta_{G1}$

2. Does Group 2 by itself differ from 0? C = [0 1], Contrast = $C^*\beta = \beta_{G2}$

3. Does Group 1 differ from Group 2? C = [1 -1], Contrast = $C^*\beta = \beta_{G1} - \beta_{G2}$

4. Does either Group 1 or Group 2 differ from 0? C has two rows: F-test (vs t-test) Concatenation of contrasts #1 and #2

Higher Level fMRI Analysis Overview

Subject 1

Fixed versus Random Effect Analysis

- Fixed effect Analysis
 - all subjects treated as a single subject (fixed effect)
 - Huge areas of activation
 - Not generalizable beyond <u>sample</u>.
- Random Effect Analysis
 - Model Subjects as a Random Effect
 - Variance comes from a single source
 - Generalizable
- Mixed Effect Analysis
 - Model Subjects as a Random Effect and var comes from both first level and subjects
 - More complicated to compute

Fixed effect vs. Random effect

Do we want to make an inference about

- The particular group we sampled? (Fixed Effect)
- The population they were sampled from? (Random Efect)

Two effect exist:

- Intra-subject variability:
 - there is some uncertainty on each subject's estimated effect due to "noise" in the fMRI data
- Inter-subject variability:

different subjects may have intrinsically different effects

Fixed effect vs. Random effect

N E

U R

> 0 I

M

A

G I N

G

&

A

L Y

S

I

S

T E

A M

ึกเกิ

Statistical Analysis: Independent Component Analysis

N E U R

M A G

I N G

& A N A

L Y

S I S T E A M

NIAT

Different Kinds of Data Analysis:

<u>Classical Data Analysis</u> How well does my model Fit to the data?

Problem 🔶 Data 🔶

Model ➡ Analysis

➡ Results

 results depend on the model **Exploratory Data Analysis**

Is there any interesting thing in the data?

Problem 🔶 Data 🔶

Analysis 🔶 Model

➡ Results

 can give unexpected results

Why We need ICA in fMRI analysis?

Experiment:

suboptimal event timing, non-efficient design, etc.

Physiology:

secondary activation, ill-defined baseline, resting-fluctuations

Analysis:

filtering & sampling artifacts, design misspecification.

MR Physics Analysis:

MR noise, field inhomogeneity ,MR artifacts etc.

ICA Basis:

Independency among the sources (Spatial & Temporal)

 $mixing \Rightarrow$

a Non-Gaussianity

ICA Algorithms:

objective function +optimization technique

- maximum entropy & gradient descent (InfoMax)
- kurtosis or cumulates & gradient descent (Jade)
- negentropy & fixed point iteration (FastICA)

Spatial /Tempral ICA in FMRI

ពរតក

C.

Preprocessing:PCA

PCA finds projections of maximum amount of variance in Gaussian data.

In fMRI data:

- calculate the datacovariance matrix
- calculate the full set of Eigenvectors
- calculate the principal components by projecting the data onto the Eigenvectors

กเดา

Alternative hypothesis test

use a Gaussian / mixture model fitted to the histogram of intensity values (using EM)

RCSTIN

Applications

- MELODIC can be useful to investigate the BOLD for finding areas of 'activation' which respond in a more complex way to an external stimulus
- estimate artifacts in the data

 analyze data for which no model of the BOLD response is available

Investigating the BOLD response

- audio-visual stimulation
- 30s on/off reversing checkerboard with colour: GLM results and primary PICA map

ากกา

Different kinds of Artifact

high-frequency noise

abrupt head motion

N E R 0 M A G I N G & A N A L Y S I S T E A M

NIAT

Different kinds of Artifact

slow head motion

<u>signal loss due to B0</u> <u>inhomogeneity</u>

ึกเกิ

Different kinds of Artifact

EPI (N/2) ghosting

Eye-related artefacts

fMRI Analysis Processing with FSL

BET brain extraction

SUSAN noise reduction

FAST Segmentation

FLIRT linear registration

FEAT FMRI analysis

MELODIC ICA

FDT diffusion

POSSUM MRI simulator

FSLView

Misc Exit Help

1

Presented By: Nafiseh Hasani

Preparing Data for fMRI Analysis

□ With Dicomworks and DCM2Nii software convert functional and anatomical data into correct format (nifti ,4D) **FSL: Single Subject**

BET

//.

All anatomical images have to be

Data

😝 😁 😁 📉 FEAT – FMRI Expert Analysis Tool v5.98	
First-level analysis 🥏 Full analysis 🛁	
Misc Data Pre-stats Stats Post-stats Registration	Number of analyses
Number of inputs 1 🚔 Select 4D data	Total Volumes
Output directory	Delete Volumes
Total volumes 80 🍨 Delete volumes 0 🌲 TR (s) 3.0 🌲 High pass filter cutoff (s) 100 🌲	
	High Pass Filter Cuto
DISTR	\varTheta \varTheta 🔿 🕅 🔀 Select input d
	1: /Users/franklin/Desktop/EH0154/EH0154_finger
	Paste
Go Save Load Exit Help Utils	

- of analyses
- mes
- lumes
- s Filter Cutoff

🔀 Select input data

4	.9

OK

-

Delete Volumes

- □ The Number of initial FMRI volumes to delete before any further processing
- □ Typically two or three volumes
- □ These volumes are deleted as soon as the analysis is started

High Pass Filter Cutoff

- ❑ A sensible setting in the case of an rArA or rArB type block design, is the r+A or r+A+r+B ,total cycle time
- For event-related designs the rule is not so simple.
 But in general the cut off can typically be reduced at least to 50s

Pre-stats

D Motion Correction

BET Brain Extraction

- □ Slice timing correction
- **Spatial Smoothing FWHM (mm)**
- **Temporal Filtering**

\varTheta 🔿 🔿 🛛 🔀 FEAT - FMRI Expert Analysis Tool v5.98
First-level analysis 🦳 Full analysis 🛁
Misc Data Pre-stats Stats Post-stats Registration
Motion correction: MCFLIRT -
Slice timing correction: None -
BET brain extraction F Spatial smoothing FWHM (mm) 5
Temporal filtering Perfusion subtraction I Highpass I MELODIC ICA data exploration I
Go Save Load Exit Help Utils

Slice timing correction

- □ If slices were acquired from the bottom of the brain to the top select **Regular up**
- □ If slices were acquired from the top of the brain to the bottom select **Regular down**
- If the slices were acquired with interleaved order (0, 2, 4 ... 1, 3, 5 ...) the choose the Interleaved option.

Spatial Smoothing FWHM

- □ This is intended to reduce noise without reducing valid activation; this is successful as long as the underlying activation area is larger than the extent of the smoothing
- □ if you are looking for very small activation areas then you should maybe reduce smoothing from the default of 5mm, and if you are looking for larger areas, you can increase it

Temporal Filtering

- □ Highpass temporal filtering : remove low frequency artifacts
- □ Lowpass temporal filtering: reduces high frequency noise by Gaussian smoothing (sigma=2.8s), but also reduces the strength of the signal of interest. so is turned off by default.

Model Setup:

- 1. Model Setup Wizard
 - Allows you to setup simple experimental designs.

2. Full Model Setup

• You will need to give a text file containing ones and zeros for each explanatory variable.

0) 🖯 🛛	FEAT - FI	MRI Exp	ert Analysi	s Tool v5.98	
		First-leve	I analysis	- Full analy	/sis 🛁	
Mis	sc Data	Pre-stats	Stats	Post-stats	Registration	
F	Use FILM	prewhitening				
	Add motio	n parameters	to model			
1	🛛 Add additi	onal confoun	d EVs			
	Model se	etup wizard				
	Full mo	odel setup				
	Go	Save	Load	Exit	Help	Utils

Contrasts

00	🆻 🛛 📉 General Linear Model
EVs C	Contrasts & F-tests
Number	of original EVs 1 🚔
1	
EVr	name finger
Basi	c shape: Custom (3 column format) 🥏
F	ilename /Users/franklin/Desktop/EH0154/task.t; 🔄
Con	volution:
F	'hase (s) 0 🚔
s	itddev (s) 3 🚔
h	1ean lag (s) 6 🚔
F 4	dd temporal derivative
F A	apply temporal filtering
	View design Efficiency Done

 Original EVs- Explanatory Variables

 Basic Shape- design matrix Custom (3 Column Format)

0	30	1
30	30	0
60	30	1
90	30	0
120	30	1
150	30	0
180	30	1
210	30	0

\varTheta 🖯 🕙 🛛 🕅 General Linear Model
EVs Contrasts & F-tests
Setup contrasts & F-tests for Original EVs
Paste Title EV1
OC1 Finger 1 🚔
View design Efficiency Done

3-Column Text File

Post-stats

😝 😑 🚫 TEAT – FMRI Expert Analysis Tool v5.98
First-level analysis 🛁 🛛 Full analysis 🛁
Misc Data Pre-stats Stats Post-stats Registration
Pre-threshold masking
Cluster - Z threshold 2.3 Cluster P threshold 0.05
Contrast masking
Rendering
Create time series plots
Go Save Load Exit Help Utils

• The data is usually run with the default threshold of Z > 2.3.

Registration

□ Main Structure – 3D anatomical image.

□ Standard Space – Should be an image in

Talairach space

	FEAT - FMRI Expert Analysis Tool v5.98
	First-level analysis 🖃 📕 Full analysis 🖃
Misc	Data Pre-stats Stats Post-stats Registration
	Initial structural image — Main structural image
Π	/root/Desktop/zeynali_post1/xt1_brain
	Linear Full search - 9 DOF -
	/usr/local/fsl/data/standard/MNI152_T1_2mm_brain
F	Linear Normal search - 12 DOF -
	Nonlinear 🔟
Go	Save Load Exit Help Utils

Results

- For each analyses ran through FEAT an output directory is created with the extension ".feat"
 - This folder you will contain all statistical images and files.
 - •The results can be viewed by clicking on the **report.html**.
 - This will included the Pre-stats, Stats, Post-Stats, Registration, and Log.

Results

1944	1744	173428	1744	1744	1944	1744	1744	17443	1944	1744	.79
Pre-stats											

Analysis methods

FMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool) Version 5.98, part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). The following pre-statistics processing was applied; motion correction using MCFLIRT [Jenkinson 2002]; non-brain removal using BET [Smith 2002]; spatial smoothing using a Gaussian kernel of FWHM 5mm; grand-mean intensity normalisation of the entire 4D dataset by a single multiplicative factor; highpass temporal filtering (Gaussian-weighted least-squares straight line fitting, with sigma=50.0s).

References

[Jenkinson 2002] M. Jenkinson and P. Bannister and M. Brady and S. Smith. Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17:2(825-841) 2002. [Smith 2002] S. Smith. Fast Robust Automated Brain Extraction. Human Brain Mapping 17:3(143-155) 2002.

Results

Stats

Analysis methods

FMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool) Version 5.98, part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). Time-series statistical analysis was carried out using FILM with local autocorrelation correction [Woolrich 2001].

References

[Woolrich 2001] M.W. Woolrich, B.D. Ripley, J.M. Brady and S.M. Smith. Temporal Autocorrelation in Univariate Linear Modelling of FMRI Data. NeuroImage 14:6(1370-1386) 2001.

FEAT FMRI Analysis Results

Post-stats

Analysis methods

FMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool) Version 5.98, part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). Z (Gaussianised T/F) statistic images were thresholded using clusters determined by Z>2.3 and a (corrected) cluster significance threshold of P=0.05 [Worsley 2001].

References

[Worsley 2001] K.J. Worsley. Statistical analysis of activation images. Ch 14, in Functional MRI: An Introduction to Methods, eds. P. Jezzard, P.M. Matthews and S.M. Smith. OUP, 2001.

Thresholded activ zstat1 - C1 (fing	vation images er)	2.3	11.2				19 Maria			18 al	ANN
Ser.	No.			0							
and the second											
· · ·	*										
	٢		())	۲							
-	Ø		. 9.7	•							
Time series plots	zstati: max Z st	at of 11.2485 at your	(00 G7 25)	- full note	1 m		17-still Children (Children (Childre				South Range

63

Results

Registration

Analysis methods

Summary registration, FMRI to standard space

FMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool) Version 5.98, part of FSL (FMRIB's Software Library, www.fmnb.ox.ac.uk/fsl). Registration to high resolution structural and/or standard space images was carried out using FLIRT [Jenkinson 2001, 2002].

References

[Jenkinson 2001] M. Jenkinson and S.M. Smith. A Global Optimisation Method for Robust Affine Registration of Brain Images. Medical Image Analysis 5:2(143-156) 2001. [Jenkinson 2002] M. Jenkinson, P. Bannister, M. Brady and S. Smith. Improved Optimisation for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. NeuroImage 17:2(825-841) 2002.

Registration of initial' highres to highres

- Set tab at top left to Higher-level analysis
- Data Tab:
 - Inputs are FEAT directories
 - 9 inputs
 - Output directory should be ok if you launched FSL from the directory I told you to create for yourself!

😰 🛛 FEAT - FMRI Expert Analysis Tool v5.98 📃 🗆 🗙
Higher-level analysis - Stats + Post-stats -
Misc Data Pre-stats Stats Post-stats Registration
Inputs are lower-level FEAT directories 🛁
Number of inputs 9 🚔 Select FEAT directories
Output directory
FSL
Go Save Load Exit Help Utils

_		- (Select input data	
Q	Select input data 🛛 💶 🗙			
1:	/home/kpirog3/cabi_course/fsl/subj1/fmri12secon12secoffs006a001.feat		Filter: //home/kpirog3/cabi_course/fsl/subj1/*.feat	•
2: 3:			Directories: Filtered Directorie	s: 1001.ft
4:			bas_fmri_12secon_12se fmri12secon12secoffs00	
5:				
6:				
7:				- 84
8:				
9:			Selection: /home/kpirog3/cabi_course/fsl/subj1/fmri12secon12	2secoffs 🔻
	Paste		Ok Filter Cancel	

Click on folders to get to file selection dialog and select the fmri...feat directory for each participant

✓ ////	FEAT - FMRI Expe	ert Analysis 1	ōol v5.98	- • ×
	Higher-level analysis 😑	Sta	ts + Post-stats 🛛	
Misc	Data Pre-stats Sta	lts Post-stats	Registration	
Mix	ed effects: FLAME 1 🖂			
U	Jse automatic outlier de-wei	ghting		
	Model setup wizard			
	Full model setup			
Go	Save Lu	bad Exit	Help	Utils

Fixed effects
Mixed effects: FLAME1
Mixed effects: FLAME 1+2
Mixed effects: Simple OLS

Fixed effects

□ FE ignores cross-session/subject variance, reported activation is with respect to the group of sessions or subjects present, and not representative of the wider population

Mixed effects: Simple OLS

OLS (ordinary least squares) is a fast estimation technique which ignores all lower-level variance estimation and applies a very simple higher-level model. This is the least accurate of the ME options.

Mixed effects: FLAME1

For the most accurate estimation of higher-level activation you should use FLAME (FMRIB's Local Analysis of Mixed Effects) modeling and estimation. it allows separate modeling of the variance in different subject groups

□ The first stage of FLAME is significantly more accurate than OLS, and nearly as fast

Mixed effects: FLAME1 +2

- The second stage of FLAME increases accuracy slightly over the first stage, but is quite a lot slower (typically 45-200 minutes).
- □ FLAME 1+2 is most significant in a highest-level analysis when you have a small number of subjects (say <10).

Model Setup

🗆 EVs Tab

- Only 1 group of subjects
- Want to see motor activity for all subjects, so set EV to 1 for each input

Number of	main EVs 1				
Number of additional, voxel-dependent EVs 0					
Paste	Group	EV1			
Input 1	1 🚔	1 🚔			
Input 2	1 🚔	1.0 🚔			
Input 3	1 🚔	1.0 🚔			
Input 4	1 🚔	1.0 🚔			
Input 5	1 🚔	1.0 🚔			
Input 6	1 🚔	1.0 🚔			
Input 7	1 🚔	1.0 🚔			
Input 8	1 🚔	1.0 🚔			
Input 9	1 🚔	1.0 🚔			
View design Efficiency Done					
Group Effects 💙 Model setup wi: 🗕 🗆 🗙 💠 single group average 🔶 two groups, unpaired two groups, paired EV1 = include in group1Number of subjects in first group 1 ŧ EV2 = include in group2Process. General Linear Model General Linear Nodel - GX Model -----EVs Contrasts & F-tests E∀s Contrasts & F-tests 1 Number of EVs 2 ≜ ▼ -Contrasts 2 F-tests 0 Number of groups 2 1 Title EV1 E∀2 의 -1 의 1 ৰ চাৰ চ C1 🗖 🗛 - B EV1 Group E¥2 Imput 1 ≜ ∑ C2 🗖 B-A -1 ⊻ • 2 ≜ ∑0 2 10 2 10 2 1 Imput 2 1 1 20 Input 3 1 1 · 0 희오 2 lmput 4 2 ∄0 스 코 희 Input S 2 group1 ≜ 0 ≜ ▼ ▲ ▼ ímput & 2 20 A ^ 2 (mput 7 2 _____ ∑ 2 lmput 🚳 **원** 0 2 (nput 9 ∇ <u>م</u> 희 1 Imput 10 2 C1 λ - B 1 -1 \mathbf{M} ≜ ∑ 4 C2 B - A -1 1 ≜ ▼ imput 11 2 0 ▼ <u>▲</u> 코 <u> </u> Imput 12 2 0 2 group2 <u> ~</u> 도 음 토 1 ব দ ব চ ব চ 0 Imput 13 2 _____ ∑ 1 Imput 14 2 0 ۵ ۷ 월 1 Imput 15 2 0 릪 1 희 2 흴 rput 18 0 View design Covariance Done View design Covariance Done

Group Effects

		~	Model		K Mode = = ×
EV1 = include in condition1 EV2 = include in condition2			A > B C1 condition A > B 1 C2 condition B > A -1	s1 0 0	 single group average two groups, unpaired two groups, paired Process
condition1 condition2	General Linear Hodel Conturasts & F-tests EV's Conturasts & F-tests Number of EV's 2 Croup EV's Croup EV's Croup EV's Mumber of groups 2 Imput 1 1 1 2 Imput 2 1 1 2 Imput 3 1 1 2 Imput 4 1 1 2 Imput 5 1 1 2 <th></th> <th>Ceneral Linear Model EVs Contrasts & F-tests Contrasts 2 2 F-tests 0 Trols EV1 C0 A - B 1 C1 A - B 1 C2 B - A -1 I □ 1</th> <th></th> <th>Model - 4 % 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 -1 1 -1 1 -1</th>		Ceneral Linear Model EVs Contrasts & F-tests Contrasts 2 2 F-tests 0 Trols EV1 C0 A - B 1 C1 A - B 1 C2 B - A -1 I □ 1		Model - 4 % 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 -1 1 -1 1 -1
	View design Covariance Done		View design Covariance	Done	74

FMRI Data

Mixing Matrix

P x K

P= Num. of Scans

K= Num. of IC

No Statistical Constraint (Possibly <u>correlated)</u>

Spatial Maps

K x N

K= Num. of IC N=Num. of Voxels

Statistically <u>Independent</u> Non-Gaussian Sources (including Noise)

P x N

P= Num. of Scans

N= Num. of Voxels

Columns are Vectors of Observations

GLM vs. ICA

Group ICA models

Each Single subject analysis yields a different set of ICs

Calhoun et. al 2009

Temporal Concatenation

✓ This approach does not assume that the temporal response pattern is the same across the population.

Tensor ICA

It is recommended to use this approach for data where the stimulus paradigm is consistent between session/subjects.
 Tensor-ICA assumes that the temporal response pattern is the same across the population and provides a single decomposition for all original data sets.

Practical

FSL MELODIC

Multivariate Exploratory Linear Optimized Decomposition into Independent Components

Practical-set

To call the MELODIC GUI, type Melodic in a terminal.

😣 🖻 🗈 MELODIC Version 3.12
Misc Data Pre-Stats Registration Stats Post-Stats
Number of inputs 2 🌻 Select 4D data
Output directory
Total volumes 0 Delete volumes 0
TR (s) 3.0 TR (s) 100
FSC
Go Save Load Exit Help

Press the **MELODIC** button

Practical-set

80	MELC	DIC Versio	on 3.12	_	_	
Misc	Data	Pre-Stats	Registration	Stats	Post-Stats	1
	Initial stru —Main str	ctural image uctural imag	e			
•	Linear	Normal se	arch 🛁 🛛 7 DC)F 🛁		
	Standar	d space				
	/usr/loca	al/fsl/data/sta	andard/MNI152_	T1_2mm	_brain	
—	Linear	Normal se	arch 🗕 12 D	0F 🛁		
	Nonline	ear 🗆				
	Resam	pling resolu	tion (mm) 🛛 🛔	Ī		
	1					
	Go	Save	Load		Exit	Help

Practical-set

😣 🗐 🗊 MELODIC Version 3.12
Misc Data Pre-Stats Registration Stats Post-Stats
 Variance-normalise timecourses Automatic dimensionality estimation
Multi-session temporal concatenation 🥏
Go Save Load Exit Help

Practical-set

Se MELODIC Version 3.12
Misc Data Pre-Stats Registration Stats Post-Stats
Threshold IC maps 0.5
Background image Mean highres -
Output full stats folder
l imeseries model
Timeseries contrasts
Session/subjects model
Session/subjects contrasts
Go Save Load Exit Help

If a temporal design was specified in the <u>Post-Stats</u> section then the time series plot will also contain a plot of the total model fit

Practical-output

ICs Estimation

 $\leq - \geq$

MELODIC Component 1

22

Components

8.72 % of explained variance; 3.28 % of total variance

Practical-output

✓ For each component the final mixing matrix melodic_mix contains the temporal response of all different data sets concatenated into a single column vector

Practical-output

The TICA Subject/Session modes plot contains a series of boxplots, one per estimated component. The boxplots themselves show the distribution of the relative effect sizes per subject for a given component. The components are ordered in decreasing order of median effect size.

Practical-output

Each component has three main parts: spatial map, time course and subject/session effect sizes.

ICA on resting/null data

- Group study
- (10 subjects under rest): consistent resting fluctuations
- medial (A) visual cortex
- lateral (B) visual cortex
- auditory (C)
- sensori-motor (D)
 - visuo-spatial system (E)
- executive control (F)
- dorsal visual stream (G,H)

Thanks for Your Attention

N E U R O

M G I N G

& A N A

L Y

S I S T E A M

NIAT

