EXPERIMENTAL DESIGN IN FMRI M A Oghabian

www.oghabian.net

EXPERIMENTAL DESIGN IN FMRI

1- Categorical Designs (Subtraction Based)
2- Factorial Designs
3- Parametric Designe

1- Subtraction Method

Interested in process P?

Task A contains P; Task B is similar to task A without P.

Subtraction: A – B = P

Simple Subtraction Method

T1: Simple Reaction Time

Hit button when you see a light

- T2: Discrimination Reaction Time
- Hit button when light is green but not red

- T3: Choice Reaction Time
- Hit left button when light is green and right button when light is red

Simple Subtraction Method

Simple Subtraction Method

Simple subtraction

 you can identify functionally specialised regions with regionally specific activation differences

Serial Subtraction Method

Serial subtraction

Question: Is inferior temporal cortex (IT) involved in phonological retrieval during object recognition?

Cognitive processes

- ⇒ visual analysis: occipital cortex
- \Rightarrow object recognition: ???
- \Rightarrow phonological retrieval: ???
- ⇒ verbal output: Broca's area

Subtraction Method

Experimental design

A say "yes" when you see an abstract image (vis. analysis, verbal output)

B say "yes" when you see a concrete object

(vis. analysis, object recognition, verbal output)

C name concrete object (vis. analysis, object recognition, phonological retrieval, verbal output)

⇒ butterfly

Subtraction Method

- **B** A \Rightarrow significant IT activation \Rightarrow object recognition!
- C B ⇒ no significant IT activation ⇒ no evidence for IT involvement in phonological retrieval!

Find the Commonalities

Find the Commonalities Task A

Find the Commonalities Task A Task **B**

2- Factorial Design

Background

- "the whole is more than just the sum of its parts"
- cognitive processes are interdependent ⇒ task A interacts with task B, A modulates sensitivity to B ...

Factorial Design

D Name colour of abstract image (vis. analysis, phonological retrieval, verbal output)						
no phonolog. retrieval				phonolog. retrieval		
no obj reco	ect gn.	Α	visual analysis	D	visual analysis phonological retrieval verbal output	

recogn.	7	verbal output		verbal output
object recognit.	В	visual analysis object recognition verbal output	C	visual analysis object recognition phonological retrieval verbal output

Interaction: $(C - D) - (B - A) \Rightarrow$ significant IT activation

 phonological retrieval modulates IT response to object recognition ⇒ IT also involved in phonological retrieval!

Parametric Design

	cognitive processes
categorical/factorial designs	binary
parametric designs	continuous

Systematic variation of regional activation with endo-/exogenous parameters

- ⇒ task stays the same while the amount of processing varies; thus, changes to the nature of the task are less of a problem
- ⇒ you can test for both linear (i.e.level of sensorimotor/cognitive processing) and non-linear effects (i.e. time effects)

Example 1: linear activation increase in LOC with increasing object visibility!

Parametric Design

Variables Studied:

<u>Sensory:</u> Flicker Frequency, Speech Presentation Rate, Stimulus intensity and pain

Motor: Tapping Rate

<u>Cognitive</u> : Attention Load, Working Memory Load

Parametric Design

Example 2: Non-linear decrease of prefrontal activation over time during procedural learning!

Combining parametric and factorial designs

Control Condition

<u>Problem</u>

- fMRI = contrastive method
 - \Rightarrow for many designs, you need to include adequate control conditions

"Rest" = often substantial activation in many areas!

- ⇒ reason: mental imagery / rehearsal / eye movements...
- \Rightarrow loss of sensitivity!

Adaptation in fMRI

Two stimuli: can neurons tell the difference?

A voxel containing neurons that respond to all politicians, irrespective of party

 A voxel containing some specifically Democratic neurons, and other specifically Republican neurons.

From R. Raizada

Adaptation in fMRI

Responses to individual stimuli do not show whether neurons can tell the

Different sets of neurons are active within the voxel, but overall fMRI responses are indistinguishable

From R. Raizada

Adaptation in fMRI

Neural adaptation to repeated stimuli does show the difference: What counts as repetition for neurons in a voxel?

Same neurons, adapting: It's a politician again

From R. Raizada

Different, fresh neurons: It's a Democrat

2- Trail Timing (Design types)

Blocked Designs

Event-Related Designs

> Intermixed Designs

Goal of Design

- Goal of the design: optimization (efficiency)
- ⇒ Have a sufficiently high frequency (avoid noise)
- ⇒ Increase the number of observations (statistical design)
- ⇒ Increase the variability (NRJ = ∑ signal² = f(var)), i.e. decrease the overlap between same BOLD responses & increase the differential overlap (event-related design)

Trail Timing (Design types)

Block Design

Event-Related Design

Designs: Block/epoch-vs event-related

Block/epoch designs examine responses to series of similar stimuli

Block Design

Consider the simplest case, a block design with two conditions e.g. alternate tapping of two fingers vs. rest let's assume 2 sec/volume

How long should a run be?

- Short enough that the subject can remain **comfortable** without moving or swallowing.
- Long enough that you're not wasting a lot of time restarting the scanner.
- Ideal is ~5 ± 2 minutes

Block Design

How fast should the conditions cycle? Every 4 sec (2 images) 0.9 06 0.4 01 -0.2 -0.5 post-H<u>RF</u> 1.5

• signal amplitude is weakened by HRF

• not too far from range of breathing frequency (every 4-10 sec) \rightarrow could lead to respiratory artifacts

- allows enough time for signal to oscillate fully
- not near artifact frequencies
- a reasonable time for subjects to keep doing the same thing

Every 96 sec (48 images)

- more noise at low frequencies
- linear trend confound
- subject will get bored

• very few repetitions – hard to do eyeball test of significance

Block Design Optimization

we want short ISI and Long Blocks

confounds of blocked designs

(Johnson et al 1997)

1. Randomized trial order: confounds of blocked designs (Johnson et al 1997)

2. Post hoc / subjective classification of trials *e.g,* according to subsequent memory (Gonsalves & Paller 2000)

R = Words Later Remembered

F = Words Later Forgotten

Slide from Rick Henson

1. Randomized trial order: *confounds of blocked designs* (*Johnson et al 1997*)

2. Post hoc / subjective classification of trials *e.g,* according to subsequent memory (Gonsalves & Paller 2000)

3. Some events can only be indicated by subject (in time)

e.g, spontaneous perceptual changes (Kleinschmidt et al 1998)

1. Randomized trial order: confounds of blocked designs (Johnson et al 1997)

2. Post hoc / subjective classification of trials *e.g,* according to subsequent memory (Gonsalves & Paller 2000)

3. Some events can only be indicated by subject (in time)

e.g, spontaneous perceptual changes (Kleinschmidt et al 1998)

4. Some trials cannot be blocked due to stimulus context or interactions

e.g, "oddball" designs (Clark et al., 2000)

Modeling block designs: epochs vs events

• *Designs* can be blocked or intermixed, BUT models for blocked designs can be epoch- or event-related

Modeling block designs: epochs vs events

Epochs are periods of sustained stimulation

Epoch

Modeling block designs: epochs vs events

• Events are impulses (delta-functions)

Series of events

Delta functions

 Typical TR for 60 slice EPI at 3mm spacing is ~ 4s

- Typical TR for 48 slice EPI at 3mm spacing is ~ 4s
- Sampling at [0,4,8,12...] poststimulus may miss peak signal

- Typical TR for 48 slice EPI at 3mm spacing is ~ 4s
- Sampling at [0,4,8,12...] poststimulus may miss peak signal
- Higher effective sampling by:
 - 1. Asynchrony e.g., *SOA*=1.5TR

- Typical TR for 48 slice EPI at 3mm spacing is ~ 4s
- Sampling at [0,4,8,12...] poststimulus may miss peak signal
- Higher effective sampling by:
 - 1. Asynchrony e.g., *SOA*=1.5TR
 - 2. Random Jitter e,g., $SOA = (2 \pm 0.5)TR$

fMRI Designs and Efficiency

- 1- Choose your design and task according to your Hypothetic topic
- 2- consider:
 - Block design for Detection
 - Event-related design for Estimation
 - Mixed design for Estimation of events during different 'states'
- 3- Think 'frequency', 'decorrelation', and 'sequence order'

fMRI Designs and Efficiency

Optimize the covariance matrix = increase the variability

✓ $Y = X\beta + e$ (data=model*reg coef + error) ✓ $\hat{\beta} = (X^T X)^{-1} X^T Y$ (we search β)

γ = Cβ̂ (contrast = combination of β̂)
t = γ / (std * sqrt(C (X^T X)⁻¹ C^T)) (usual t-test effect / error)
/
/
/
/
/