Mathematics of Diffusion Tensor Imaging M A Oghabian Head of Neuroimaging and Analysis Group

Algorithm to measure diffusion ellipsoid from diffusion measurements along six independent axes

- At least two data points are needed to obtain a diffusion constant from a slope of signal attenuation.
- This include one low-diffusion-weighted image corresponds to b0, and one of 6 main combined directions in x, y, and z.
- Apparent Diffusion Constant along each direction, eg; in xgradient (Sx), we can calculate an the x-axis (ADCx).
- 6 ADCs are obtained using various gradient combinations x, y, z, x+y, x+z, y+z gradients

$$
\frac{S}{S_0} = e^{-\gamma^2 G^2 \delta^2 (\Delta - \delta/3) D} = e^{-bD}
$$

A b0 (S0 Image) and six DWI images along six different axes are needed

For 6 gradient direction

• For a directional gradients, we obtain:

- b is $\gamma^2 |G^2 \delta^2$ ($\Delta \delta/3$)
- \overline{g} is a unit vector pointing along the direction of the gradient

In actual experiments, the six parameters in the matrix (or tensor) D are what we want to determine

Equation $\frac{s}{s_0} = e^{-b\overline{g}^T \overline{D}} \overline{g}$ has a total of 6 unknowns D but we have at least 7 experimental results (S) with different g and b values, Therefore, it can be solved.

• For example if we use the x-gradient, $[1,0,0]$, measure image intensity S_x, and put thas number into above Eq., the $-\overline{b g}^T \overline{\overline{b}}_{\overline{g}}$ portion becomes

$$
\gamma^2 G^2 \delta^2 (\varDelta-\delta/3) \ \ (1,0,0) \begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}
$$

• If we solve this part and put it back into previous Eq., it becomes:

$$
\frac{S_x}{S_0} = e^{-\gamma^2 G^2 \delta^2 (\Delta - \delta/3) D_{xx}}
$$

from which we can obtain the element D_{xx} .

• Similarly, from experiments using the y- and zgradient only, we can obtain D_{yy} and D_{zz} .

• If we apply the same strength to $(x+y)$ gradient simultaneously, we obtain the image intensity S_{xy}

$$
\overline{g} = \left[\sqrt{1/2}, \sqrt{1/2}, 0\right]
$$

$$
\frac{S_{xy}}{S_0} = e^{-\gamma^2 G^2 \delta^2 (\Delta - \delta/3)(1/2D_{xx} + D_{xy} + 1/2D_{yy})}
$$

Because we already know D_{xx} and D_{yy} , we can calculate D_{xy} from this result. Similarly D_{xz} and D_{yz} can be obtained

TO DETERMINE THE 6 PARAMETERS OF A DIFFUSION ELLIPSOID

- The 6 elements of D are used and converted to give:
	- To obtain these 6 parameters from 3*3*3 diffusion tensor, *D* a process called "diagonalization" if used.

$$
\overline{\mathbf{D}} = \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{bmatrix} \xrightarrow{\text{diagonalization}} \lambda_1, \lambda_2, \lambda_3, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3
$$

3 numbers for the length of the longest $(\lambda 1)$, middle $(\lambda 2)$, and shortest $(\lambda 3)$ axes, which define the ellipsoid shape

3 vectors (v1, v2, v3) to define ellipsoid orientations (principal axes).

Eigenvectors ε₁- Principal Eigenvector

Eigenvalues: λ₁- Largest Eigenvalue λ₂- Intermediate Eigenvalue λ ₃ – Smallest Eigenvalue

The three eigenvectors are *always* perpendicular to each other

6 PARAMETERS OF DIFFUSION ELLIPSOID vs diffusion matrix D

How to measure diffusion tensor D from more gradient direction

- For more gradient direction, a fitting technique should be used rather than solving it.
- We need to expand the Eq. to

 $b\overline{g}^T\overline{D}\overline{g} = b[g_x \quad g_y \quad g_z] \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{bmatrix} \begin{bmatrix} g_x \\ g_y \\ g_z \end{bmatrix}$ = $b(D_{xx}g_x^2 + D_{yy}g_y^2 + D_{zz}g_z^2 + 2D_{xy}g_xg_y + 2D_{xz}g_xg_z$ + $2D_{yz}g_yg_z$) $=\overline{h}\cdot\overline{D}$

• Here, we have defined two new vectors, b and D which are defined as:

$$
\overline{b} = b[g_x^2, g_y^2, g_z^2, 2g_xg_y, 2g_xg_z, 2g_yg_z]
$$

$$
\overline{D} = [D_{xx}, D_{yy}, D_{zz}, D_{xy}, D_{xz}, D_{yz}]
$$

Then the main equation can be rewritten to:

$$
\ln(S) = \ln(S_0) - \overline{b} \cdot \overline{D}
$$

- This equation is very similar to a simple linear equation, **y=constant-ax**,
- **y** is the measurement (equivalent to ln(S)),
- **ln(S0)** is the constant
- **a** is the slope (equivalent to the b vector),
- **x** is the independent variable (here D vector).
- This equation can be solved by **linear least-square fitting**, to obtain D

Example of solving Diffusion tensor using least square fitting

• for one 0-gradient and 6 gradient combination of: [0,0,0], [1,0,0], [0,1,0], [0,0,1], $\left|\sqrt{2},\sqrt{2},0\right|\left|\sqrt{2},0,\sqrt{2}\right|\left|0,\sqrt{2},\sqrt{2}\right|$

(This correspond to 7 b-vectors $(b_{_{\rm 1}},b_{\rm 2},......,b_{\rm 7})$, each having 6 parameters,

And image intensities S1, S2,. . .,S7

From each measurement; then, the entire experiment can be expressed as: In which $\frac{1}{\beta}$ is called the b-matrix.

Eg: with 30 different direction \overline{b} (i=1,2, . . ., 31)

then 31 images (S $_1$, \ldots , S $_{31})$ are obtained (1 for 0gradeint and 30 directions).

In this equation, best estimated D can be obtained

