Modulation Transfer Function (MTF)

- Graphical description of system resolution showing the quality of object transferred to image.
- eg; If %80 of object contrast is present in image, then MTP is 0.8

If object size (eg; The thickness of slit in a lead plate or Line in LSF) is ∆, then spatial frequency is: Spatial Frequency =1/(2∆) Frequency and space (time) are convertible to each other. Therefore, taking Fourier Transform of LSF we get MTF.

h(x,y)=LSF

$$H(U,V) = \int \int_{-\infty}^{+\infty} h(x,y) \exp\left[-2\pi i(ux+vy)\right] dx dy$$

$$MTF(U,V) = |H(U,V)|$$

- An object can be represented by its frequency components (Sinusoidal signals) using FT.
- Then comparing these information with the MTF of system, we can evaluate the system to see if it can transfer the essential details (eg; Whether it can reconstruct the degraded information lost by Sampling)
- FT of Noise is also useful to evaluate the system for transferring or eliminating noise information through the system.
- FT of noise (Power spectrum or Wiener spectrum) is compared with the MTF of the system.

Using Square (Sinusoidal) test Pattern for MTF

MTF measurement

 A sinusoidal test phantom (a series of slits or square shape holes) is fixed in distance F from Source and d from Film. M=(F+d)/F

Then, the image of slits at various size are obtained.

MTF measurement

Modulation (Contrast) of object is obtained for a point source as M'

$$M' = \frac{T_o}{T_{av}}$$

- Where:
- $T_o = density changes$
- $T_{av} = Average density on film$
- $T_o^+ = Maximum density$
- $T_o^{-} = Minimum density$

MTF measurement

Modulation (Contrast) of image is obtained using the actual Focal Spot M

- H(f) is less than 1, and It can be shown that H(f) is equivalent to FT of Focal Spot (PSF) with an addition of Magnification factor M.
- Therefore for calculation of MTF, first FT of Focal Spot should be obtained, then its Frequency is modified (decreased) by M.

$$\mathbf{f} = \mathbf{f}_0 / \mathbf{M}$$

Experimental measurement of MTF

Input Modulation is:

$$M'(f) = \frac{A'_{\max} - A'_{\min}}{A'_{\max} + A'_{\min}}$$

A = Amplitude

Output Modulation is:

$$M(f) = \frac{A_{\max} - A_{\min}}{A_{\max} + A_{\min}}$$

Usualy Output Modulation is smaller than Input Modulation

Modulation Transfer
$$(MT) = \frac{Modulation of output signal}{Modulation of input signal} = \frac{M}{M'}$$

Since the Modulation of both Input and Output are similar at frequency of 0, therefore MTF is 1 in zero frequency. In addition the MTF of Input is close to 1 at all frequencies. therefore, S:

MTF =
$$\frac{M(f)}{M'(f)} \times \frac{M'(0)}{M(0)} = \frac{M(f)}{M(0)}$$

Expected MTP of x-ray system components

MTF of Focal Spot

Focal Spot

Focal Spot MTF

a) Cylindrical filament opposite plane anode

b) Focussing effect of the Wehnelt electrode

MTF of various shape of Focal Spot

Figure 16-21. Fluence through a square wave test pattern for frequencies of 0.6, 1.0, 1.6, 1.8, 2.0, 3.1, 5.4, 3.7, and 4.0 lp/mm. The magnification was 1.7 so that, for example, the distance d = 1.7(1/0.6) = 2.83 mm.

Focal Spots MTF depend on the shape and size of focal spot and magnification of image.For example; MTF of Square or Double pick focal spot is:

Finite source

The total detected Intensity (image) of a transparent object (hole) having transmission $t(x,y) = \exp[-\mu(x,y) \delta(z - z_0)]$ imaged by a finite x-ray source, s(x,y) is obtained by convolution process:

$$I_d(x_d, y_d) = Kt(\frac{x_d}{M}, \frac{y_d}{M}) * s(\frac{x_d}{m}, \frac{y_d}{m})$$

The detected image will be the convolution of a agnified object and a agnified source. In frequency domain:

$$I_d(u,v) = KM^2m^2T(Mu,Mv)S(mu,mv)$$

Two sources Radiating a Test Pattern

MTF of different System components

2.000

Star resolution pattern with and without Magnification

Change of focal spot size with tube loading

Expected Resolution of different modalities

Measuring MTF (conceptually)

measures change in the amplitude of sine waves

Measuring MTF (theoretically)

a POINT is composed of all spatial frequencies

a LINE is composed of all spatial frequencies in one direction and zero frequency in the other

Measuring MTF (experimentally) Screen-Film Systems

Measuring MTF (experimentally) Digital Detectors (Pre-Sampled)

OVERSAMPLINY OF LSF

ALIASING