Imaging System Components

M A Oghabian

Medical Physics Group, Tehran University of Medical Sciences

www.oghabian.net

Tungsten Target

(+)

Cu

cathode

Titling angle θ

Sin20° = 0.342, Sin16.5 =0.284

Apparent focal spot size

Focal Spot

Add module code number and lesson title

Focal Spot MTF

a) Cylindrical filament opposite plane anode

b) Focussing effect of the Wehnelt electrode

The second of th

MTF of various shape of Focal Spot

Figure 7-4 Alignment of light and x-ray beams

Change of focal spot size with tube loading

A schematic of the high-voltage cathode-anode circuit.

Figure 3-5 High-voltage (cathode-anode) circuit and x-ray tube filament circuit

Ripple factor: The variation in the voltage across the x-ray tube expressed as a percentage of the maximum value.

S

p

Figure 3-22 The ripple factor in single-phase two-pulse (A), three-phase six-pulse (B), and three-phase twelve-pulse (C) circuits. (D) Chopped DC

Full-wave rectification better

Three-phase full wave (6 phase) rectification- better still.

Three-phase full wave (12 phase) rectification- Closer to DC field.

Fluoroscopy system

Different fluoroscopy systems

■ Remote control systems

Not requiring the presence of medical specialists inside the Xray room

■ Mobile C-arms

Mostly used in surgical theatres.

Different fluoroscopy systems

□ Interventional radiology systems

Requiring specific safety considerations.
Interventionalists can be near the patient during the procedure.

Multipurpose fluoroscopy systems

They can be used as a remote control system or as a system to perform simple interventional procedures

Two types of Fluoroscopy are:

- under-couch tube design
- over-couch tube design
- Over-couch tube design offers a greater distance between tube and both patient and intensifier.
 - This improves image quality by reducing geometric unsharpness and reduces radiation skin dose to the patient.
- Under-couch tube design provides direct fluoroscopy screen and therefor allows operator to be close to the patient.

Image Intensifier component and parameters

Image intensifier systems

Image intensifier component

- □ Input screen: conversion of incident X-rays into light photons (CsI) Sodiun- activated caesium iodide
 - □ 1 X-ray photon creates ≈ 3,000 light photons
- Photocathode: conversion of light photons into electrons
 Caesium or antimony
 - □ only 10 to 20% of light photons are converted into photoelectrons
- ☑ Electrodes: focalization of electrons onto the output screen
 - **⋈** electrodes provide the electronic magnification
- Output screen: conversion of accelerated electrons into light photons; Zinc Cadmium Sulphide

Image intensifier parameters (I)

- Conversion coefficient (Gx): the ratio of the output screen brightness to the input screen dose rate [cd.m⁻²μGys⁻¹]
 - \blacksquare Gx depends on the quality of the incident beam (IEC publication 573 recommends HVL of 7 \pm 0.2 mm Al)
 - Gx is directly proportional to:
 - **□** the applied tube potential
 - \bowtie the diameter (ϕ) of the input screen
 - \bowtie input screen of 22 cm → Gx = 200
 - \bowtie input screen of 16 cm → Gx = 200 x (16/22)² = 105
 - \bowtie input screen of 11 cm → Gx = 200 x (11/22)² = 50

Image intensifier parameters (II)

Brightness Uniformity: the input screen brightness may vary from the center of the I.I. to the periphery

Uniformity = (Brightness_(c) - Brightness_(p)) x 100 / Brightness_(c)

Geometrical distortion: all x-ray image intensifiers exhibit some degree of pincushion distortion. This is usually caused by either magnetic contamination of the image tube or the installation of the intensifier in a strong magnetic environment.

Image distortion

Image distortion

Pin-cushion

S-distortion

Image intensifier parameters (III)

Spatial resolution limit:

- It provides a sensitive measure of the state of focusing of a system
 - it is quoted by manufacturer
 - it can be measured optically
 - it correlates well with the high frequency limit of the Modulation Transfer Function (MTF)
 - it can be assessed by the Hüttner resolution pattern

Line pair gauges GOOD RESOLUTION

POOR RESOLUTION

Image intensifier parameters (IV)

Overall image quality:

threshold contrast-detail detection

- X-ray, electrons and light scatter process in an I.I. can result in a significant loss of contrast of radiological detail.
- The degree of contrast is effected by the design of the image tube and coupling optics.

Spurious sources of contrast loss are:

- accumulation of dust and dirt on the various optical surfaces
- reduction in the quality of the vacuum
- aging process (destruction of phosphor screen)

Sources of noise are:

- X-ray quantum mottle
- photo-conversion processes

Image intensifier - TV system

Output screen image can be transferred to different optical displaying systems:

conventional TV

- Generating a full frame of 525 lines (in USA)
- interlaced mode is used to prevent flickering

cinema

35 mm film format: from 25 to 150 images/s

photography

- rolled film of 105 mm: max 6 images/s
- film of 100 mm x 100 mm

Type of TV camera

VIDICON TV camera

- (antimony trisulphide)
- improvement of contrast
- improvement of signal to noise ratio
- high image lag
- PLUMBICON TV camera (suitable for cardiology)
 - lead oxide
 - lower image lag (follow up of organ motions)
 - higher quantum noise level
- CCD TV camera (digital fluoroscopy)
 - digital fluoroscopy spot films are limited in resolution, since they depend on the TV camera (no better than about 2 lp/mm) for a 1000 line TV system

Photoconductive camera tube

TV camera and video signal

- □ یک نوع دوربین مورد استفاده در سیستم فلورسکوپی Vidicon نامیده می شود که از شیشه خلاً به قطر ۲ تا ۳ سانتی متر و طول ۱۰ تا ۲۰ سانتی متر تشکیل شده است.
 - □ صفحه ورودی دوربین از سه لایه تشکیل شده است:
 - □ ۱- لایه خارجی از شیشه که محافظت را بعهده دارد.
- $Zinc\ oxide$ پوشانده شده، هادی $Zinc\ oxide$ باشد از لایه ای از Transparent می باشد لذا اجازه می دهد نور الکتریکی شفاف (Transparent) می باشد لذا اجازه می دهد نور به لایه سوم منتقل شود. این لایه $Signal\ electrod$ نام دارد.

TV camera and video signal

- □ طرف دیگر دوربین تفنگ الکترونی است که از فیلامان، گرید و الکترود شتابدهنده تشکیل شده است.
 - □ فيلامان براساس حرارت توليد الكترون مي كند.
 - □ گرید کنترل میزان جریان الکترون را فراهم می کند.
- □ الکترود شتابدهنده دارای سوراخی در مسرکسز است که الکترون ها از وسط آن عبور کرده و شتاب میگیرند (با ۲۰ تا ۲۰ ولت).
- □ الكترون هاى حاصل از تفنك تحت اثر فيلد هاى الكتريكى نخرديك تيوب دوربين باعث حركات افقى و عمودى منظم (Scanning) شده تا ميدان مستطيلى صفحهٔ حساس Photoconductor را بپوشاند (نام ميدان Raster است).

TV camera and video signal (IV)

- In a typical television system, on the first pass the set of odd numbered lines are scanned followed by the even numbers (<u>interlaced</u>).
- The purpose of interlacing is to prevent flickering of the television image on the monitor, by increasing the apparent frequency of frames (50 half frames/second).
- In Europe, 25 frames are updated every second.

TV camera and Monitor (V)

- The video signal comprises a set of **repetitive synchronizing pulses**. In between there is a signal that is produced by the light falling on the camera surface.
- The synchronizing voltage is used to trigger the TV system to begin sweeping across a raster line.
- Another voltage pulse is used to trigger the system to start rescanning the television field.
- A series of electronic circuits move the scanning beams of the TV camera and monitor in synchronism.
- The current, which flows down the scanning beam in the TV monitor, is related to that in the TV camera.
- Consequently, the brightness of the image on the TV monitor is proportional to the amount of light falling on the corresponding position on the TV camera.

TV camera and video signal (CCD)

- Many modern fluoroscopy systems used CCD (charge coupled devices) TV cameras.
- ☐ The front surface is a mosaic of detectors from which a signal is derived.

Schematic structure of a charged couple device (CCD)

Linear system

$$x(t)$$
 \rightarrow $PSF=h(t)$ \rightarrow $y(t)$

$$\mathbf{y}(\mathbf{t}) = \int_{-\infty}^{+\infty} \mathbf{h}(\mathbf{t} - \tau) \mathbf{x}(\tau) d\tau$$

Exmaple of System Components in a Medical Imaging system

Figure 15–12 The elements of an image processing system

Where to Get More Information

Physics of diagnostic radiology, Curry et al, Lea & Febiger, 1990

Imaging systems in medical diagnostics, Krestel ed., Siemens, 1990

The physics of diagnostic imaging, Dowsett et al, Chapman&Hall, 1998