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Review of 2D Fourier Theory
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We view f(x,y) as a linear combination of complex exponentials that represent plane 
waves.  
F(u,v) describes the weighting of each wave.
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Review of 2D Fourier theory, continued.

F(u,v) can be plotted as real and imaginary images, or as magnitude and phase.   |F(u,v)| = 

And Phase(F(u,v) = arctan(Im(F(u,v)/Re(F(u,v))

Just as in the 1D case, pairs of exponentials make cosines or sines.

We can view F(u,v) as  
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Review of 2D Fourier theory, continued: properties

- Similar to 1D properties  
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Then

1. Linearity

2. Scaling or Magnification

3. Shift

4. Convolution
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Review of 2D Fourier theory, continued: properties

If g(x,y) can be expressed as gx(x)gy(y),  the F{g(x,y)} = 
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Relation between 1-D and 2-D Fourier Transforms

Rearranging the Fourier Integral,  
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Taking the integrals along x gives, 

Taking the integrals of                 along y gives F(u,v) ),(F̂ yu



31-01-1387 7

Sampling
Model  

)(ĝ x
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We use the comb function and scale it for the sampling interval X. 
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Spectrum of Sampled Signal
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Prior to sampling,

After sampling,
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Multiplication in one domain becomes convolution in the other,
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Spectrum of Sampled Signal: Band limiting and Aliasing

If G(u) is band limited to uc, (cutoff frequency)

G(u) = 0 for |u| > uc.
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To avoid overlap (aliasing), 
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Nyquist Condition:
Sampling rate must be greater than twice the highest frequency component.
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Spectrum of Sampled Signal: Restoration of Original Signal

Can we restore g(x) from the sampled frequency-domain signal?
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Yes, using the Interpolation Filter
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Spectrum of Sampled Signal: Restoration of Original Signal(2)

From previous page,
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g(x) is restored from a combination of sinc functions.  

Each is weighted and shifted according to its 

corresponding sampling point.
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Visualizing Sinc Interpolation

Original function Sampled function

Weighted and shifted sincs for 3 
sample points shown by black arrows

Each row shows convolution
of shifted sinc with a
sampled point.  Sum lines along vertical 
direction to get output.
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Original functions and output

a) Continuous waveform b) Sampled waveform c) Sinc interpolation of 
sampled waveform ( sum of vertical lines in lower left plot from previous 
slide.

a) b)
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Two Dimensional Sampling
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