

Adaptive Filters (De-Noising)

Adaptive Local Noise Reduction Filter

Assume the variance of the noise σ_n² is either known or can be estimated satisfactorily
Filtering operation changes at different regions of an image according to local variance σ_L² and mean m_L calculated within an M×N region
If σ_L² > σ_n², the filtering operation is defined as

f(x, y) = g(x, y) - σ_n²[g(x, y) - m_L]

If σ_L² < σ_n², the output takes the mean value

That is: σ_n²/σ_L² is set tobe 1
At edges, it is assumes that σ_L² > σ_n²

Adaptive Median Filter (De-Noising)

•	Aedian filter is effective for removing salt-
C	ind-pepper noise
	The density of the impulse noise can not be too
	large
A	Adaptive median filter
	Netelier
	 Z_{min}: minimum gray value in S_{xy}
	 Z_{max}: maximum gray value in S_{xv}
	 Z_{med}: median of gray levels in S_{xv}
	 Z_{xv}: gray value of the image at (x,y)
	• S _{max} : maximum allowed size of S _{vv}

Optimum Notch Filtering

The restored image can be improve by introducing a modulation function

$$f(x, y) = g(x, y) - w(x, y)\hat{\eta}(x, y)$$

 Here the modulation function is a constant within a neighborhood of size (2a+1) by (2b+1) about a point (x,y)

 We optimize its performance by minimizing the local variance of the restored image at the position (x,y)

$$\sigma^{2}(x, y) = \frac{1}{(2a+1)(2b+1)} \sum_{s=-at=-b}^{a} \sum_{b=-b}^{b} \left[\hat{f}(x+s, y+t) - \bar{f}(x, y) \right]^{2}$$
$$\bar{f}(x, y) = \frac{1}{(2a+1)(2b+1)} \sum_{s=-at=-b}^{a} \sum_{b=-b}^{b} \hat{f}(x+s, y+t)$$

Estimating by Modeling

Blurring by linear motion:
$g(x, y) = \int_{0}^{T} f[x - x_{0}(t), y - y_{0}(t)]dt$
$G(u,v) = F(u,v) \int_{0}^{T} e^{-j2\pi [ux_{0}(t)+vy_{0}(t)]} dt$
$\Rightarrow H(u,v) = \int_{0}^{T} e^{-j2\pi[ux_0(t)+vy_0(t)]} dt$
<i>if</i> $x_0(t) = at/T$ and $y_0(t) = 0 \implies H(u,v) = \int_0^T e^{-2\pi u at/T} dt$
$=\frac{T}{\pi ua}\sin(\pi ua)e^{-j\pi ua}$

