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Digital Image Processing 

 

Image Restoration 

(Chapter 7) 

• Image restoration vs. image enhancement 

 Enhancement: 

 largely a subjective process 

 Priori knowledge about the degradation is not a must 
(sometimes no degradation is involved) 

 Procedures are heuristic and take advantage of the 
psychophysical aspects of human visual system    

 Restoration: 

 more an objective process 

 Images are degraded 

 Tries to recover the images by using the knowledge 
about the degradation  

Image Restoration 



1/10/2014 

2 

• Two types of degradation 
 Additive noise 

 Spatial domain restoration (denoising) techniques are preferred 

 Image blur 
 Frequency domain methods are preferred 

• We model the degradation process by a degradation 
function h(x,y), an additive noise term, (x,y), as: 
 

g(x,y)=h(x,y)*f(x,y)+ (x,y) 
 

 f(x,y) is the (input) image free from any degradation 
 g(x,y) is the degraded image 
 * is the convolution operator 
 The goal is to obtain an estimate of f(x,y) according to the 

knowledge about the degradation function h and the additive noise   

 In frequency domain: G(u,v)=H(u,v)F(u,v)+N(u,v) 

An Image Degradation Model 

A Model of the Image 
Degradation/Restoration Process 
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• We first consider the degradation due to noise only 
 h is an impulse for now ( H is a constant)  

• White noise 
 Autocorrelation function is an impulse function multiplied by a 

constant 

   

 

 

 

 It means there is no correlation between any two pixels in the 
noise image 

 There is no way to predict the next noise value 

 

 The spectrum of the autocorrelation function is a constant 
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Noise Model 

• Noise (image) can be classified according the 
distribution of the values of pixels (of the noise image) 
or its (normalized) histogram  

• Gaussian noise is characterized by two parameters,  
(mean) and σ2 (variance), by 

 

 

 

 

• 70% values of z fall in the range [(-σ),(+σ)] 

• 95% values of z fall in the range [(-2σ),(+2σ)] 
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Gaussian Noise 

 

   

 

The mean and variance of this 
density are given by 

 

 

a and b can be obtained through 
mean and variance 
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 The mean and variance of this 
density are given by 

 

 

 a and b can be obtained 
through mean and variance 

















0for                               0

0for      
)!1()(

1

z

ze
b

za

zp
az

bb

2

2 and  /
a

b
ab  

Erlang (Gamma) noiseModels 

 

   

 

 The mean and variance of 
this density are given by 

 

 

 

 Special case pf Erlang PDF 
with b=1 
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The mean and variance of 
this density are given by 
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Uniform noise Models 

 a and b usually are extreme 
values because impulse 
corruption is usually large 
compared with the strength of 
the image signal 
 
 

 If either Pa or Pb is zero, the 
impulse noise is called unipolar  
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Effect of Adding Noise to 
Sample Image 

Effect of Adding Noise to Sample Image 
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• Arises typically from electrical or 
electromechanical interference 
during image acquisition 

  

• It can be observed by visual 
inspection both in the spatial 
domain and frequency domain 

 

• The only spatially dependent 
noise will be considered  

Periodic Noise 

• Periodic noise 

 Parameters can be estimated by inspection of the spectrum 

• Noise PDFs 
 From sensor specifications 

 Capture a set of images of plain environments 

 Parameters of the PDF can be estimated from small patches of 
constant regions of the noisy images 

 In most cases, only mean and variance are to be estimated 

Estimation of Noise Parameters 
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• Mean filters 
 Arithmetic mean filter 
 Sx,y is the mask 

 

 Geometric mean filters 
 Tends to preserve more details 

 

 Harmonic mean filter   
 Works well for salt noise  
 but fails for pepper noise  

 
 Contra-harmonic mean filter 
 Q: order of the filter 
 Positive Q works for pepper noise 
 Negative Q works for salt noise 
 Q=0arithmetic mean filter 
 Q=-1harmonic mean filter   
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Restoration of Noise (De-Noising) 

De-Noising 
Corrupted by 

Gaussian Noise 

Mean 
Filtering Geometric 

Mean Filtering 
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De-Noising Corrupted by 
pepper noise 

Corrupted by 
salt noise 

3x3 
Contraharmonic 
Q=1.5 

3x3 
Contraharmonic 
Q=-1.5 

De-Noising with wrong filter sign 
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• Median filter 
 Median represents the 50th percentile of a ranked set of 

numbers  

 
• Max and min filter 

 Max filter uses the 100th percentile of a ranked set of numbers 

 Good for removing pepper noise 
 

 Min filter uses the 1 percentile of a ranked set of numbers 
 Good for removing salt noise  

 
• Midpoint filter 

 
 Works best for noise with symmetric PDF like Gaussian or uniform noise  
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Filters Based on Order Statistics (De-Noising) 

De-Noising Corrupted by salt & 
pepper noise 

One pass 
median filtering 

Two pass 
median filtering 

Three pass 
median filtering 
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De-Noising 

Max Filtering Min Filtering 

Corrupted by 
pepper noise 

Corrupted by 
salt noise 

• Take the mean value of the pixels (enclosed by an m×n 
mask) after deleting the pixels with the d/2 lowest and 
the d/2 highest gray-level values 

 

 

 

 gr(s,t) represent the remaining mn-d pixels  

 It is useful in situations involving multiple types of 
noise like a combination of salt-and-pepper and 
Gaussian   
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Alpha-Trimmed Mean Filter (De-Noising) 
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De-Noising 

Corrupted by 
additive Uniform 
noise 

Added salt  & 
pepper noise 

5x5 Mean 
Filtering 5x5 Geo-Mean 

Filtering 

5x5 Median 
Filtering 

5x5 Alpha-
trimmed Mean 
Filtering 

• Adaptive Local Noise Reduction Filter 
 Assume the variance of the noise     is either known or 

can be estimated satisfactorily 
 Filtering operation changes at different regions of an 

image according to local variance     and mean mL 
calculated within an M×N region 
 

 If             , the filtering operation is defined as 
 

  

 
 If              , the output takes the mean value 

 
 That is: 
   

 At edges, it is assumes that  
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Adaptive Filters (De-Noising) 
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De-Noising Corrupted by 
Gaussian noise 

Mean 
Filtering 

Geo-Mean 
Filtering 

Adaptive 
Filtering 

• Median filter is effective for removing salt-
and-pepper noise 

 The density of the impulse noise can not be too 
large 

• Adaptive median filter 

 Notation 

 Zmin: minimum gray value in Sxy 

 Zmax: maximum gray value in Sxy 

 Zmed: median of gray levels in Sxy 

 Zxy: gray value of the image at (x,y) 

 Smax: maximum allowed size of Sxy 

Adaptive Median Filter 
(De-Noising) 
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• Two levels of operations 
 Level A:  
 A1= Zmed –Zmin 

 A2= Zmed –Zmax 

 If A1 > 0 AND A2 < 0, Go to level B 
   else increase the window size by 2 
 If window size <= Smax  repeat level A 
    else output Zxy 

 

 Level B: 
 B1= Zxy –Zmin 

 B2= Zxy –Zmax 

 If B1 > 0 AND B2 < 0, output Zxy 
   else output Zmed 

 
 

Test whether Zmed is part 

of s-and-p noise.  

• If yes, window size is 

increased 

Test whether Zxy is part 

of s-and-p noise.  

• If yes, apply regular 

median filtering  

Adaptive Median Filter 
(De-Noising) 

De-Noising 

Median Filtering Adaptive Median 
Filtering 
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• Lowpass and highpass filters for image 
enhancement can be used. 

 

• Bandreject, bandpass, and notch filters as 
tools for periodic noise reduction or removal 
can also be used. 

Periodic Noise Reduction by Frequency 
Domain Filtering  

• Bandreject filters remove or attenuate a band of 
frequencies about the origin of the Fourier transform. 

• Similar to those LPFs and HPFs, we can construct ideal, 
Butterworth, and Gaussian bandreject filters. 

  

• Ideal bandreject filter 

 

 

Bandreject Filters 
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Butterworth Bandreject Filters 

n =1 
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Butterworth Bandreject Filters 
For reduction of Periodic Noise 

Bandbass Filters 

),(1),( vuHvuH brbp 

Bandpass filter performs the opposite of a bandreject 
filter 
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Notch Filters 

 

• Notch filter rejects frequencies in predefined neighborhoods 
about a center frequency. 

• It appears in symmetric pairs about the origin because the 
Fourier transform of a real valued image is symmetric. 
 

• Ideal notch filter 
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Butterworth Notch Filters 

n=2 
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Notch Filters that pass, rather than suppress 

• NR filters become highpass filters if NP  filters 
become lowpass, and vise versa.  
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Notch Filters 

You can see the 
effect of scan lines 

Spectrum of 
image 

Notch pass 
filter 

IFT of NP 
filtered image 

Result of 
NR filter 

Optimum Notch Filtering 
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• In the ideal case, the original image can be restored if 
the noise can be estimated completely.  

 That is: 

 

• However, the noise can be only partially estimated. This 
means the restored image is not exact.  

 Which means 
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Optimum Notch Filtering 

• The restored image can be improve by introducing a 
modulation function  

   

 

 Here  the modulation function is a constant within a 
neighborhood of size (2a+1) by (2b+1) about a point (x,y) 

 We optimize its performance by minimizing the local variance 
of the restored image at the position (x,y)  
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Points on or near Edge of the image can be treated by considering 
partial neighborhoods 
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Optimum Notch Filtering 

Optimum Notch Filtering 



1/10/2014 

25 

Optimum Notch Filtering 

),( yxg ),(ˆ yxf

Optimum Notch Filtering 

Image size: 512x512 

a=b=15 
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• Degradation Model 
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System Degradation effects: 

Linear, Position-Invariant Degradation  
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In the absence of additive noise: 

For scalar values of a and b, H is linear if: 

H is Position-Invariant if: 

),(),(),(),(

),(),(*),(),(

vuNvuFvuHvuG

yxyxfyxhyxg



 

Linear, Position-Invariant Degradation  

In the presence of additive noise: 
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• Many types of degradation can be approximated by 
linear, position-invariant processes 

• Extensive tools of linear system theory are available 

• In this situation, restoration is image deconvolution 
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• Ways to estimate the degradation function for use in 
image restoration: 

 Observation 

 Experimentation 

 Mathematical modeling  

 

 Estimating by Image Observation 
 We look for a small section of the image that has strong signal 

content (                 ) and then construct an un-degradation of this 
section by using sample gray levels (                ). 

 

 

 

 Now, we construct a function              on a large scale, but having 
the same shape.       

   

Estimating the Degradation Function  
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• We try to obtain impulse response of the degradation 
by imaging an impulse (small dot of light) using the 
system. Therefore 

Estimating by Experimentation 
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Estimating by Modeling 

6/522 )(),( vukevuH Atmospheric turbulence model: 

Negligible 
turbulence 

Mid 
turbulence 
k=0.001 

High 
turbulence 
k=0.0025 

Low 
turbulence 
k=0.00025 
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Inverse Filtering 
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The simplest approach to restoration is direct inverse 
filtering: 
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Even if we know the 
degradation function, we 
cannot recover the un-
degraded image 

If the degradation has zero or very small values, then the ratio 
N/H could easily dominate our estimation of F . 

One approach to get around the zero or small-value problem 
is to limit the filter frequencies to value near the origin. 
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Inverse Filtering 

Full inverse 
Filtering 

Filtering with H cut 
off outside a radius 
of 70 

Filtering with H 
cut off outside a 
radius of 40 

Filtering with H 
cut off outside a 
radius of 85 

Degraded 
Image 

Minimum Mean Square Error Filtering 
(Wiener Filtering) 

])ˆ[( 22 ffEe 

This approach incorporate both the degradation 
function and statistical characteristic of noise into the 
restoration process. 

Image and noise 
are random 
process 

The objective is to find an estimation for f  such that minimized e2 
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Minimum Mean Square Error Filtering 
(Wiener Filtering) 
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If the noise is zero, 
then the Wiener Filter 
reduces to the inverse 
filter. 
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Minimum Mean Square Error Filtering 
(Wiener Filtering) 
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Wiener Filtering 

Full inverse 
filtering 

Radially limited 
inverse filtering  

Wiener filtering 

(K was chosen interactively) 

Wiener Filtering Inverse filtering 

 

 

 

Reduced 
noise 

variance 

 

 

Wiener filtering 
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Geometric Transformations 

• Unlike the techniques discussed so far, 
geometric transformations modify the spatial 
relationships between pixels in an image. 

 

Geometric transformation: RUBBER-SHEET 
TRANSFORMATION 

Basic Operations: 

 1. Spatial Transformation 

 2. Gray-level Interpolation 

Spatial Transformations 
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Spatial Transformations 

Gray-level Interpolation 

dyxcybxayxv ),(
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Geometric Transformations 

Image showing 
tiepoints 

Tiepoints after 
geo. distortion 

Geo. Dist. Image 
using nearest NI 

Geo. Dist. Image 
using Bilinear 
Interp. 

Restored image 

Restored image 

Geometric Transformations 


