
Digital Image Processing

Image Enhancement in the 

Frequency Domain 

(Chapter 5)



Any function that periodically 
repeats itself can be expressed
as the sum of sines and/or 
cosines of different 
frequencies, each multiplied 
by a different coefficients.
This sum is called a Fourier
series.

Fourier Series
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Fourier Series



A function that is not periodic but the area under 
its curve is finite can be expressed as the integral 
of sines and/or cosines multiplied by a weighing 
function. The formulation in this case is Fourier 
transform.

Fourier Transform
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Continuous One-Dimensional Fourier 
Transform and Its Inverse

Where 1j

• (u) is the frequency variable.

• F(u) is composed of an infinite sum of sine 
and cosine terms and…

• Each value of u determines the frequency of 
its corresponding sine-cosine pair.
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Continuous One-Dimensional Fourier Transform 
and Its Inverse

Example
Find the Fourier transform of a gate function (t) 
defined by



Discrete One-Dimensional Fourier Transform 
and Its Inverse

• A continuous function f(x) is discretized into a 
sequence:

)}]1[(),...,2(),(),({ 0000 xNxfxxfxxfxf 

by taking N or M samples x units apart.



Discrete One-Dimensional Fourier Transform 
and Its Inverse

• Where x assumes the discrete values 
(0,1,2,3,…,M-1) then

)()( 0 xxxfxf 

• The sequence {f(0),f(1),f(2),…f(M-1)} denotes any 

M uniformly spaced samples from a corresponding 

continuous function.
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u =[0,1,2, …, M-1]

x =[0,1,2, …, M-1]

Discrete One-Dimensional Fourier Transform 
and Its Inverse



Discrete One-Dimensional Fourier Transform 
and Its Inverse

• The values u = 0, 1, 2, …, M-1 correspond to 

samples of the continuous transform at 
values 0, u, 2u, …, (M-1)u.

i.e. F(u) represents F(uu), where:



u 
1

Mx



Discrete One-Dimensional Fourier Transform 
and Its Inverse

• The  Fourier transform of a real function is 
generally complex and we use polar 
coordinates:

• Its phase angle 
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• The square of the spectrum
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uIuRuFuP 

is referred to as the Power Spectrum of f(x) 

(spectral density).

Discrete One-Dimensional Fourier Transform 
and Its Inverse



• Fourier spectrum:   2/122 ),(),(),( vuIvuRvuF 

• Phase: 
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Discrete 2-Dimensional Fourier Transform 



Discrete One-Dimensional Fourier Transform 
and Its Inverse



1 second

Fmax = 100 Hz
What is the sampling rate (Nyquist)?
What is the time resolution?
What is the frequency resolution?
What if we take samples for two seconds with the Nyquist 
sampling rate?

Time and Frequency Resolution and 
Sampling
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Fourier Spectrum

Discrete Two-Dimensional Fourier Transform 
and Its Inverse
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F(0,0) is the average intensity of an image

Discrete Two-Dimensional Fourier Transform and 
Its Inverse



Use Matlab to generate the above figures

Discrete Two-Dimensional Fourier Transform and 
Its Inverse
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Frequency Shifting Property of the Fourier 
Transform



Frequency Shifting Property of the Fourier 
Transform



function Normalized_DFT = Img_DFT(img)

img=double(img);    % So mathematical operations can be conducted on

%  the image pixels.

[R,C]=size(img);

for r = 1:R % To phase shift the image so the DFT will be

for c=1:C %    centered on the display monitor

phased_img(r,c)=(img(r,c))*(-1)^(r+c);

end

end

fourier_img = fft2(phased_img); %Discrete Fourier Transform

mag_fourier_img = abs(fourier_img ); % Magnitude of DFT

Log_mag_fourier_img = log10(mag_fourier_img +1);

Max = max(max(Log_mag_fourier_img ));

Normalized_DFT = (Log_ mag_fourier_img )*(255/Max);

imshow(uint8(Normalized_DFT))

Basic Filtering in the Frequency Domain using 
Matlab



1. Multiply the input image by (-1)x+y to center the transform
2. Compute F(u,v), the DFT of the image from (1)
3. Multiply F(u,v) by a filter function H(u,v)
4. Compute the inverse DFT of the result in (3)
5. Obtain the real part of the result in (4)
6. Multiply the result in (5) by (-1)x+y

Basic Filtering in the Frequency Domain



An image and its Frequency information
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Notch Filter

Filtering out the DC Frequency Component



Low Pass Filter attenuate 
high frequencies while 
“passing” low frequencies.

High Pass Filter
attenuate low frequencies 
while “passing” high 
frequencies.

Low-pass and High-pass Filters



High-pass Filtering



Low-pass and High-pass Filters
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Smoothing Frequency Domain, 
Ideal Low-pass Filters
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Total Power

The remained percentage
power after filtration

Smoothing Frequency Domain, 
Ideal Low-pass Filters



For circle radius fc =5

Enclose image power  = 92%

fc =15

 = 94.6%

fc =30

 = 96.4%

fc =80

 = 98%
fc =230

 = 99.5%

Smoothing Frequency Domain,
Ideal Low-pass Filters



Cause of Ringing
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Smoothing Frequency Domain, 
Butterworth Low-pass Filters



Smoothing Frequency Domain, 
Butterworth Low-pass Filters

Radii= 5

Radii= 15
Radii= 30

Radii= 80 Radii= 230

Butterworth Low-pass 
Filter: n=2



Smoothing Frequency Domain,
Butterworth Low-pass Filters
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Smoothing Frequency Domain, 
Gaussian Low-pass Filters



Radii= 5

Radii= 15
Radii= 30

Radii= 80 Radii= 230

Gaussian Low-pass

Smoothing Frequency Domain, 
Gaussian Low-pass Filters



Smoothing Frequency Domain, 
Gaussian Low-pass Filters



Smoothing Frequency Domain, 
Gaussian Low-pass Filters



Smoothing Frequency Domain, 
Gaussian Low-pass Filters



Hhp(u,v) = 1 - Hlp(u,v)

Ideal HPF

Butterworth HPF

Gaussian HPF

Sharpening Frequency Domain Filters



Sharpening Frequency Domain Filters
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Sharpening Frequency Domain, 
Ideal High-pass Filters
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Sharpening Frequency Domain,
Butterworth High-pass Filters
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Sharpening Frequency Domain,
Gaussian High-pass Filters



Homomorphic Filtering



Homomorphic Filtering
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h(t) g(t)k(t)
g(t) = k(t)*h(t)

G(f) = K(f)H(f)
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* is a convolution operator and not multiplication

Convolution



g
M

k m h m
m

M

( ) ( ) ( )0
1

0
0

1

 






m

k(-m)

-1

1

m

h(m)

g(t)

Convolution
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2-Dimensions Convolution
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h(t) g(t)k(t)
g(t) = k(t)h(t)

G(f) = K(f)* H(f)
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Correlation



Correlation



Convolution



Convolution



Convolution



Convolution


